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Abstract

Kernel methods are among the most �exible classes of machine learning models with strong

theoretical guarantees. Wide classes of functions can be approximated arbitrarily well with

kernels, while fast convergence and learning rates have been formally shown to hold. Exact

kernel methods are known to scale poorly with increasing dataset size, and we believe that one

of the factors limiting their usage in modern machine learning is the lack of scalable and easy

to use algorithms and software. The main goal of this thesis is to study kernel methods from

the point of view of e�cient learning, with particular emphasis on large-scale data, but also

on low-latency training, and user e�ciency. We improve the state-of-the-art for scaling kernel

solvers to datasets with billions of points using the Falkon algorithm, which combines random

projections with fast optimization. Running it on GPUs, we show how to fully utilize available

computing power for training kernel machines. To boost the ease-of-use of approximate kernel

solvers, we propose an algorithm for automated hyperparameter tuning. By minimizing a

penalized loss function, a model can be learned together with its hyperparameters, reducing the

time needed for user-driven experimentation. In the setting of multi-class learning, we show that

� under stringent but realistic assumptions on the separation between classes � a wide set of

algorithms needs much fewer data points than in the more general setting (without assumptions

on class separation) to reach the same accuracy. The �rst part of the thesis develops a framework

for e�cient and scalable kernel machines. This raises the question of whether our approaches

can be used successfully in real-world applications, especially compared to alternatives based

on deep learning which are often deemed hard to beat. The second part aims to investigate

this question on two main applications, chosen because of the paramount importance of having

an e�cient algorithm. First, we consider the problem of instance segmentation of images taken

from the iCub robot. Here Falkon is used as part of a larger pipeline, but the e�ciency a�orded

by our solver is essential to ensure smooth human-robot interactions. In the second instance,

we consider time-series forecasting of wind speed, analysing the relevance of di�erent physical

variables on the predictions themselves. We investigate di�erent schemes to adapt i.i.d. learning

to the time-series setting. Overall, this work aims to demonstrate, through novel algorithms

and examples, that kernel methods are up to computationally demanding tasks, and that there

are concrete applications in which their use is warranted and more e�cient than that of other,

more complex, and less theoretically grounded models.
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Chapter 1

Introduction

Machine learning has a wide-ranging impact on academic research, businesses, and even

consumer-facing applications, having revolutionized the �elds of data science, business intel-

ligence, arti�cial intelligence, etc. One of the major problems that researchers are grappling

with, is that of ever-growing model complexity in the face of a lack of theoretical guarantees.

A tradeo� is emerging between large, overparameterized models � which need large amounts

of dedicated computational resources to run � and small but e�cient ones. The former have

claimed renowned advances in forecasting accuracy for problems such as object recognition and

general scene understanding, in the ability to translate between di�erent data modalities, and

in the capability of generative models to fool the human eye. The latter possess theoretical

guarantees for convergence to the optimal solution, stability to data perturbations, and the

rate at which errors will decrease with training-set size. However, their performance will be

best on tabular or unstructured data, low-dimensional problems, or situations of data scarcity.

One possible class within this tradeo� is that of kernel machines. With kernels, one can model

complex non-linear relations within the data but is often limited by their poor scalability. As

the number of data samples reaches hundreds of thousands, the time and memory required for

training a kernel model quickly go from unreasonable to infeasible. In this thesis, we focus on

both the e�ciency and accuracy of kernel methods and how to obtain one while not having to

do without the other.

Shallow learning models (Ma et al., 2017) are de�ned in antithesis to deep learning as

models composed of two simple layers: �rst, a non-linear data transformation, followed by a

linear step to complete the task of classi�cation, regression, or unsupervised learning. The �rst

layer has the purpose of making the trained model more expressive and capable of representing

complex relationships, while the second makes it easy to optimize and characterize theoretically.

Possibly the most notable representatives in this class of models are the already cited kernel

methods, for which the transformed data lies in a reproducing kernel Hilbert space (Aronszajn,

1950), and which will be the main kind of model considered in this thesis. In particular, the

driving motivation behind our work has been to bridge the gap between kernel methods and
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deep neural networks (at least on those problems where the two can obtain similar accuracy)

by improving the usability of the former, addressing a few practical pain points which exist

around their usage. Increasing the computational e�ciency of training, alongside software

usability, are the primary goals, but we also consider e�ciency from the point of view of the

time a practitioner has to spend on model tuning, which can be even more signi�cant than

compute time per se.

One of the biggest challenges hindering the practical usage of kernel machines for learning

is connected to thekernel matrix, which is at the core of the learning algorithm but is also too

large to be processed e�ciently when the dataset size increases, as the number of entries it

contains scales with the square of the number of data points. For this reason, there exists a

rich literature on approximations of kernel-based learning algorithms, whose main goal is to

circumvent calculating the full kernel matrix. The two most prominent approaches for kernel

approximation are random Fourier features (RFF), and the Nyström method. The �rst are

based on the Fourier decomposition of the kernel function into a set of randomized components

which are fewer than the number of data points. We will touch upon RFF brie�y in Chapter 2,

but will devote more space to the Nyström approximation � also introduced in Chapter 2

and then used throughout the later chapters. It exploits a low-rank assumption on the kernel

matrix, by constructing an approximation from a random subsample of the kernel's columns.

This allows to greatly reduce the computational burden, while maintaining the same accuracy

as if the full kernel had been used (at least in a worst case analysis).

Given the existence of algorithms with the potential to greatly reduce the bottlenecks of

kernel methods, the persisting stigma around their ine�ciency has to be attributed to the lack

of modern, easy to use software tools that implement these improved models. Any attempt

to develop such tools must face the increasing prevalence of hardware accelerators. They can

greatly speed up computations but may require additional algorithmic considerations to be

best utilized. We take an algorithm for approximate kernel regression � the Falkon algorithm

introduced in Rudi, Carratino, et al. ( 2017) � which has optimal theoretical guarantees, and a

computational cost that is much lower than that of the full problem. The algorithm is dissected

to analyze and resolve performance bottlenecks, especially with regard to memory management.

Indeed the latter aspect is especially important when developing algorithms on accelerators such

as GPUs and TPUs which have limited memory, and for which the cost of transferring data

onto the accelerator itself can be high. The implementation which results from our analysis is

evaluated experimentally to con�rm the high e�ciency and scalability of the solver on problems

ranging from small to huge datasets. It has also been packaged into an easy to use software

library, which will be at the core of the following chapters of this thesis in which it is used as a

general purpose kernel solver.

Another important aspect of modern machine learning (ML) is hyperparameter tuning. As

the usage of ML in real-world problems becomes more prevalent, the models employed tend
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to become more complex due to the need to accommodate di�erent data sources, application

requirements, and business needs. Because of such a trend, the number of knobs that can be

turned in any given model has been increasing, leading to a consequent increase in time to

accurately tune them. AutoML has been proposing alternative systems which can automatically

tune themselveswith minimal user interaction, by searching among the di�erent hyperparameter

con�gurations in clever ways. Classically, one way to do this has been to carefully balance the

bias and variance of the generalization error such that the obtained hyperparameters do not

over�t the training set. The crucial di�culty here is in approximating the bias and variance

terms e�ciently. Following this strategy, we propose a novel regularized objective function

that can be computed e�ciently and is tailored to hyperparameter tuning for approximate

kernel methods. Gradient-based optimization of this objective helps �nd good values for the

tuning knobs, which in turn helps compress the kernel approximation even further. The user

only needs to choose initial values for the hyperparameters, which can be done using simple

heuristics.

Another aspect of the bias/variance decomposition which we tackled, is its usage in deriving

learning bounds. Often such decomposition is calculated in a setting with minimal assumptions,

which guarantees the generality of the resulting bounds but may not accurately represent

speci�c learning scenarios. In classi�cation, for example, the situation where the di�erent

classes arewell separated(which for binary classi�cation means that the true probability of

each class is never close to the decision boundary at0:5) leads to exponentially fast convergence

of the error as the data points increase. This phenomenon has been frequently observed

experimentally but can not be captured by default learning bounds. We concentrate on the

multi-class problem, where we leverage a simplex encoding of the class labels to derive an

appropriate de�nition of distance from the decision boundary. Assumptions on the distance

lead to an error decomposition in which the bias term vanishes, and we recover exponential

learning rates. Di�erently from previous works, our multi-class learning bounds apply not just

when minimizing the squared loss (rarely used in practice for classi�cation) but also for a more

general class ofmargin losses which includes the logistic and exponential loss. In line with the

rest of this thesis, we further connect the general learning bounds to the more speci�c setting

of kernel learning.

One cannot e�ectively proclaim the advantages of the algorithms for kernel learning in-

troduced up to now without discussing speci�c case studies in which they were used, thereby

showcasing their bene�ts. Taking a di�erent perspective from the methodological work of the

�rst part of this thesis, in the second part we give priority to applications of kernel methods,

and other shallow learning models. We wish to show that such methods can be the right �t for

the job in a variety of cases, through a mix of expressiveness, interpretability, and crucially

computational e�ciency.



4

The �rst application we tackle is that of instance segmentation: given an input image,

classify each of its pixels as belonging to an instance of a known object or to the background.

This complex task consists of several components: understanding known objects, classifying

individual image pixels, detecting the background,etc. Therefore it must be solved with a

pipeline consisting of multiple interconnected components. Within this pipeline, we identify

three tasks where linear and kernel-based models can be employed to improve overall e�ciency

and one task (that of feature extraction) that is better left to a large pre-trained deep learning

model instead. In this way, once the expensive pre-training step is completed, we have a pipeline

that can adapt to di�erent environments and even learn new objects on the �y. Harnessing

methods developed in the �rst part of the thesis (namely the Falkon library), we greatly reduced

the running time of the proposed instance segmentation pipeline, allowing it to run in real-time

on the iCub robot.

In the second instance, we applied shallow machine learning models to help analyze a

problem coming from climate science: wind speed forecasting. While the processing speed

o�ered by the Falkon library once again helps train a large number of models in a reasonable

amount of time, this is not the main focus of the work since the datasets are relatively small,

and there is no real-time component that would have required an especially fast solver. Instead,

the main goal is to proceed backward from the forecasts to understand which combination

of inputs (corresponding to physical observables) produces better results and to explain the

mechanistic reasons which could cause such behavior. It is a commonly held belief that kernel

methods and deep neural networks are of similar expressiveness (i.e. their accuracies are close)

on tabular data, that is data with little structure. We compare our simple model based on

kernel ridge regression on time-lagged data against more complex deep learning-based models

proposed in the literature to attempt an empirical veri�cation of this claim � at least for this

speci�c setting. While confronting with other works is never trivial, especially since wind-speed

forecasting is a small niche and no standard benchmarks exist, a comparison of kernel-based

models and recurrent or convolutional neural networks shows that indeed the performance

obtained is very similar. On the other hand, our model is easier to understand and much faster

to run.

A �nal example in which shallow learning algorithms have been shown to perform remarkably

well is in scene reconstruction or novel-view synthesis, in which 3-dimensional or 4-dimensional

models of a real-life scene are reconstructed starting from calibrated photos or videos of the

scene itself respectively. We adopt the volumetric rendering formulation introduced in Max

(1995) and use an explicit but compressed representation, which uni�es the handling of static,

dynamic, and variable-appearance scenes that previously had to be handled separately. Setting

kernel methods aside we propose two models. The �rst is fully explicit with no neural-network

components at all, and uses a learned view-dependent basis akin to spherical harmonics. The

second introduces small multi-layer perceptrons which slightly improve rendering accuracy.
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In summary, the contributions of this thesis are structured as follows:

ˆ In Chapter 3 (based on Meanti, Carratino, Rosasco, et al. (2020)) the Falkon algorithm

is presented, along its e�cient implementation speci�cally adapted to hardware accel-

erators. An extensive empirical evaluation containing ablation studies of individual

performance improvements, scalability tests to datasets up to 1 billion points, and small

data experiments concludes the chapter.

ˆ Chapter 4 concerns a novel objective for gradient-based hyperparameter tuning in Nyström

kernel ridge regression. Based on Meanti, Carratino, De Vito, et al. (2022), a short review

of existing approaches to the problem is followed by the derivation of our objective

through the bias/variance decomposition. The chapter concludes with experiments which

characterize the advantages of the proposed method.

ˆ Following Vigogna et al. (2022), in Chapter 5 exponential learning rates are derived under

hard margin assumptions in the multiclass classi�cation setting. The bounds are valid

for a general class of losses, and reduce naturally to known results in the case of binary

classi�cation.

ˆ In Chapter 6 (based on Ceola, Maiettini, Pasquale, Meanti, et al. (2022)), instance

segmentation is approached with a pipeline which has the ability to be retrained quickly to

handle new objects, and handles predictions with low latency in order to be implementable

on the iCub robot.

ˆ Chapter 7 details the application of kernel methods for wind speed forecasting, after

Lagomarsino-Oneto et al. (2023). Thousands of models are trained to perform an analysis

of variable importance, which is traced back to its physical meaning. Di�erent ways of

adapting supervised learning models to temporal data are investigated.

ˆ Finally, in Chapter 8 (see also Fridovich-Keil, Meanti, et al. (2023)), a shallow-learning

radiance �eld model is presented which uni�es static and dynamic scenes using a com-

pressed explicit representation namedk-planes. The problem is brie�y presented, followed

by a description of the proposed model, and extensive experiments.
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Learning With Kernels

2.1 Supervised Learning

The supervised learning problem refers to the approximation of a functionf which goes from an

input spaceX to an output space Y. As an example, a mail-spam �ltering model will require

learning a function from the input space of e-mail text and metadata (soX could be very

high-dimensional), to an output spaceY = f spam; not-spamg. In order to learn such function

a training set of input/output pairs is provided Z = f (x1; y1); : : : ; (xn ; yn )g � X � Y , which is

generated by a process involving the functionf and some noise� :

yi = f (x i ) + � i i = 1 ; : : : ; n:

Let the approximate function learned with the training data be called f̂ . To evaluate the

goodness off̂ we turn to the generalization erro: given a new, unseen input/output pair

(xnew; ynew) 2 X � Y how far is f̂ (xnew) from ynew, i.e. what is the error on this new point?

If we measured the error on the training set instead, we would promote models which learn

how to reproduce the training data exactly, including the noise which is always present. Such

models are said toover�t the data, at the expense of learning the true functionf � . Models

which generalize well on the other hand, will perform better at approximating the true function

f on the new data which will only be available after training.

A more formal way of looking at supervised learning is through the lens of statistical learning

theory. In order to get to a formal de�nition of the generalization error, we must introduce a

way of sampling the data pairs, di�erent loss functions to evaluate approximation quality and

the concept of hypothesis space.

2.1.1 Data distribution

Consider the spaceX � Y as a probability space with distribution � . We denote with � X the

marginal distribution of � on X and with � (�jx) the conditional distribution on Y given x 2 X .
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Given a pair of random variables (X; Y ) 2 X � Y , we can de�ne the conditional probability of

the response variable being equal toy given observationx

� (yjx) = Pf Y = yjX = xg: (2.1)

The full distribution is unknown, and can only be observed through the training set sampled

independently from the same distribution � . While the independence assumption is very

common, and will be used throughout this thesis, it is far from universal. There are some

particular settings such as for example time-series, where samples must be allowed to depend

on one another.

2.1.2 Loss functions

Given a data-point (x; y) 2 X � Y , to measure the quality of predictions of a modelf : X ! R,

we need to comparef (x) with y. This is done via a loss function` : Y � R ! [0; 1 ), whose

formula prominently depends on the type of output space. See Chapter5 for further discussion

on classi�cation problems. For example in continuous value regression whereY � R, one often

considers the squared loss

`(y; a) = ( y � a)2 y; a 2 R

which is di�erentiable everywhere and strongly convex. Another alternative is the L1 loss

`(y; a) = jy � aj which is known to promote sparse solutions in linear models (Tibshirani,1996).

When Y = f� 1; 1g the learning problem is called binary classi�cation (cf. the e-mail spam

example). In cases where the output space is very di�erent from the space of real numbers, we

can use a deterministicdecoding operatorD : R ! Y to connect predictions from the real-valued

model f (x) = a 2 R to the labels y 2 Y . Putting the two together one obtains a function

c : X ! Y which is known as aclassi�er . The most natural choice of loss function for binary

classi�cation is the 0-1 loss

`(y; a) =

8
<

:

1; if y = D(a)

0 otherwise.
; y 2 Y ; a 2 R

with link function D(a) = sgn(a), for a 2 R. However this loss is discontinuous and non-convex,

which makes it impossible to minimize using gradient-based methods (Feldman et al.,2012).

Hence continuous and convex surrogates of the 0-1 loss are commonly used to approximate it

while remaining computationally tractable. These surrogates treat the output spacef� 1; 1g as

if it were simply a subset of the real numbers. Two common examples are the logistic loss

`(y; a) = log(1 + e� ya); y 2 f� 1; 1g; a 2 R (2.2)
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and the hinge loss

`(y; a) = j1 � yaj+ ; y 2 f� 1; 1g; a 2 R: (2.3)

Another useful setting is that of multiclass classi�cation, in which case can considerY to be a

discrete set with as many elements as the number of classes. Once again the 0-1 loss cannot be

used in practice during optimization. Denote by T the number of classes (jYj = T), we de�ne

continuous relaxations of the 0-1 loss by embedding the output space intoRT such that each

y 2 Y becomes a standard basis vector ofRT indicating the correct class. This embedding �

known asone-hot � is used in combination with a multi-valued model f̂ : X ! RT , and decoder

D(y) = arg maxi =1 ;:::;T yi ; y 2 RT . The common losses used are once again the squared loss, or

the more natural cross entropy loss

`(y; p) = �
TX

i =1

yi logpi ; y; p 2 RT (2.4)

where y is the one-hot embedding of the true label, andp such that
P T

i =1 pi = 1 ; pi � 0 is the

model's output: a discrete probability distribution over the set of classes.

2.1.3 Risk evaluation

Given a probability distribution over the data and a loss, the ideal metric to evaluate a function

f against the data is the expected risk

E(f ) =
Z

X �Y
`(y; f (x)) d � (x; y): (2.5)

To learn a function f , the last object which needs to be de�ned is the space of functions in

which to look for, i.e. the hypothesis space. The widest possible space is that of all measurable

functions T . For example considering the squared loss, the widest possible space such that the

expected risk is well de�ned is the space of squared-integrable functionsL 2(X ; � X ). Then the

best solution to the supervised learning problem is

inf
f 2 L 2

� X

E(f ): (2.6)

Again considering the squared loss, the following well-known result (Cucker et al.,2002)

allows us to express the minimizer of (2.6) in closed form:
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Theorem 2.1: Cucker et al. (2002)

AssumeY � R and that there exists a constant M > 0 such that � (X � [� M; M ]) = 1

(that is, the output space is bounded), and that `(x; x 0) = kx � x0k2 8x; x 0 2 X . De�ne

f � (x) =
Z

Y
y d� (yjx) (2.7)

which belongs toL 2
� X

. Then the following holds

E(f ) � E (f � ) = kf � f � k2
� X

: (2.8)

The function f � de�ned in (2.7) is called the regressionfunction. In a similar way for binary

classi�cation, the classi�er c minimizing the misclassi�cation risk

E(c) = Pf c(X ) 6= Yg; for (X; Y ) � � (x; y) (2.9)

is D (f � (x)) = sgnf � (x) which is known as theBayes classi�er. The Bayes classi�er is equivalent

to the class with higher conditional expectation

c� (x) = D(f � (x)) = arg max
y2Y

� (yjx): (2.10)

By its de�nition, f � is the conditional expectation of y given x: f � = E[ y j x ]. Since it is the

unique minimizer of (2.6), whenever we analyze a learning algorithm we shall compare its risk

to the risk of f � :

De�nition 2.1 (Excess risk): The excess risk of an estimatorf is de�ned in relation

with the regression function:

R � (f ) := E(f ) � E (f � ) = kf � f � k2
� X

(2.11)

where the second equality is true when considering the square loss by Theorem2.1.

Although for certain losses the regression function is known, in practice it cannot be

computed as it depends on the unknown data distribution. Instead, we must rely on the

training set Z = f (x1; y1); : : : ; (xn ; yn )g which induces a �nite-sample version of Equation (2.5),

the empirical risk

Ê(f ) =
1
n

nX

i =1

`(yi ; f (x i )) ; (2.12)

which can be minimized to �nd candidate models which are close to the regression function.

To �nd functions which minimize the empirical risk, searching among all possible functions

(in T ) would not work since such space allows for elements which approximate the training set
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perfectly, but behave badly on unseen samples. This behavior - known asover�tting - can be

prevented in two ways: restricting the size of the hypothesis space from which the model may

come from (for example one may only consider linear functions), and modifying the empirical

risk criterion by adding a penalty term for �complex� functions.

Empirical Risk Minimization

At its core, ERM takes the empirical risk of (2.12) and minimizes it over some space of functions

F :

f̂ = arg min
f 2F

Ê(f ): (2.13)

The �nal quality of f̂ will depend on the chosen spaceF : if it is very large, including all sorts

of complicated functions, it is more likely to contain the true function f � but also to perfectly

match the training set along with its noise. Furthermore, �nding the minimum in a larger

space can be harder than in a smaller space, leading to additional error if the minimum is

not achieved. On the other hand if F is small, the minimum will be easy to obtain, it will be

unlikely to �t the training-set noise, but if the space does not contain the true function the

minimizer may still be far from f � . In ERM balancing between under�tting and over�tting is

controlled by the size of the hypothesis space. In practice however, without knowing which

space the target function belongs to, one may want to make the search space larger and control

over�tting in other ways.

Regularization

Regularization alters the ERM objective by adding a penalty or regularizer. Let F be a normed

space; given a functionF f 2 F , Tikhonov regularization introduces the following penalty:

f̂ � = arg min
f 2F

Ê(f ) + � kf k2
F : (2.14)

The hypothesis spaceF can be picked to be large (e.g. all smooth functions), since the parameter

� � 0 allows to choose the right trade-o� between under- and over-�tting in a �ne grained

manner. Essentially the choice of the correct function space has been reduced to the tuning

of a real-valued parameter. While doing so correctly can be hard, there are several possible

approaches which are looked into in detail in Chapter4.
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2.2 Reproducing Kernel Hilbert Spaces

In this thesis we will assumeH to be a Hilbert space. One of the simplest Hilbert spaces is

that of linear functions. Taking X � Rd,

H = f f : X ! Rjf (x) = hw; xi ; w 2 Rdg: (2.15)

However, using this space will not allow a learning algorithm to �t anything but linear

relationships between inputs and outputs; this can often be too restrictive in real-world

problems. For example, imagine trying to estimate people's height from their age: such

relationship would grow quickly at �rst, and then taper out since 50 year olds will not be

higher than 40 year olds. Therefore we need to introduce a larger Hilbert space which allows to

represent non-linear functions. In particular we introduce reproducing kernel Hilbert spaces:

De�nition 2.2 (Reproducing Kernel Hilbert Space): A spaceH is called a repro-

ducing kernel Hilbert space (RKHS) if it satis�es the following properties:

1. H is a Hilbert space of functionsf : X ! R with inner product h�; �i H .

2. The reproducing property holds: for every x 2 X there exists a function kx 2 H

such that for every f 2 H

f (x) = hf; k x i H : (2.16)

The reproducing property implies other important properties regarding the evaluation map

ex : f 7! f (x); f 2 H ; x 2 X :

ˆ For every x 2 X , the evaluation map is bounded: there exists a constantcx such that

jex (f )j = jf (x)j � cxkf kH .

ˆ For every x 2 X , the evaluation map is continuous.

Sincekx is itself a function, it can be evaluated at another point x0 2 X to get

kx (x0) = hkx ; kx0i H =: k(x; x 0): (2.17)

The two-variate function k : X � X ! R thus de�ned is known as the reproducing kernel (or

just kernel) for H . From the de�nition it also holds that k is symmetric

k(x; x 0) = hkx ; kx0i = k(x0; x) (2.18)

and positive semi-de�nite

nX

i;j =1

ai aj k(x i ; x j ) =
nX

i =1

ai

*

kx i ;
nX

j =1

aj kx j

+

H

=

*
X

i =1

ai kx i ;
X

j =1

aj kx j

+

H

= k
nX

i =1

ai kx i k
2
H (2.19)
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for all n 2 N, a1; : : : ; an 2 R and x1; : : : ; xn 2 X .

The Moore-Aronszajin theorem establishes the other side of the connection between RKHSs

and reproducing kernels, allowing to go from a kernel function to its space.

Theorem 2.2: Moore-Aronszajin

Let k : X � X ! R be a symmetric, positive de�nite function. Then there exists a unique

RKHS H such that for every x 2 H kx := k(x; �) 2 H , and for every f 2 H ; x 2 X it holds

that f (x) = hf; k x i H .

Having introduced the main space of non-linear functions which will be considered in this

thesis, we provide a connection to the linear functions space introduced as an example at the

beginning of this section: feature maps.

De�nition 2.3 (Feature map): A feature map for reproducing kernelk is a function

� : X ! W with W a Hilbert space such that, for everyx; x 0 2 X

k(x; x 0) = h� (x); � (x0)i W : (2.20)

We can see how every functionk which can be represented as(2.20) is a kernel: as an inner

product it is symmetric and positive de�nite, then by Theorem 2.2 it is a reproducing kernel.

Conversely, every reproducing kernelk de�nes a feature map, by simply choosingW = H and

letting � (x) = kx for any x 2 X . The continuity of � follows from the continuity of k since for

any x; x 0 2 X

k� (x) � � (x0)k2
W = k(x; x ) + k(x0; x0) � 2k(x; x 0): (2.21)

Moreover the feature map associated with a given kernel is not unique (Minh et al.,2006).

Intuitively feature maps can be seen as embedding points from the input spaceX , into

a space with a di�erent number of dimensions - which can even be in�nite. We will see

that this mapping allows to reuse many tools from linear modeling for learning non-linear

functions. As an example of how this can work, imagine estimating a 1-dimensional function

y = 0 :5x2 � 1:0 from noisy data depicted in Figure 2.1(a), using only linear functions of the

form f (x) = hw; xi ; w 2 R. The quality of �t will be necessarily poor (see Figure 2.1(b)) as the

model class is too simple for the task,i.e. all possible models will under�t the data. However

by replacing every data-point x with a vector � (x) = [ x2; x; 1] 2 R3, a linear function of � (x)

can be learned to �t the data precisely asf (x) = hw; � (x)i ; w 2 R3. Quadratic functions in R

can be seen as linear functions inR3 using feature map� .

Since we have seen how feature maps induce reproducing kernels, the latter can be interpreted

as an implicit mapping of the input data into a higher � possibly in�nite � dimensional space

through � . Crucially for the case of in�nite dimensional spaces one cannot compute� (x) 2 H ,

but the kernel of (2.20) belongs to the space of real numbers and can be computed explicitly.
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(a) (b) (c)

Figure 2.1 Regression on a 1D dataset generated as a parabola, using either linear (b) or
quadratic (c) functions.

Designing an appropriate kernel function for a given dataset can be crucial, especially when

the data has a well-de�ned structure. For example there exist kernels on graphs (Borgwardt

et al., 2005; Camps-Valls et al., 2006), text (Lodhi et al., 2002; Herbrich, 2001), histograms (F.

Li, Ionescu, et al., 2010), images (Cuturi et al., 2006; Barla et al., 2003), etc. note that the

sampling of references is far from complete. However kernels are frequently applied to tabular

datasets, for which a tailored function may not be easily de�ned. For this use-case, where we

assume thatX � Rd with d the dimension of the input space, there are some common kernels

which can be easily applied to obtain good results:

ˆ The linear kernel

k(x; x 0) = x> x0: (2.22)

ˆ The polynomial kernel

k(x; x 0) = (1 + x> x0)b b 2 N: (2.23)

ˆ The Gaussian kernel

k(x; x 0) = exp

 

�
 2

2
kx � x0k2

!

 > 0; (2.24)

which is in�nitely di�erentiable and translation invariant ( k(x; x 0) = k(x + x0; x0+ x0) for

all x0 2 X ).

ˆ The Laplacian kernel

k(x; x 0) = exp
�
�  kx � x0k

�
 > 0: (2.25)

Some of these options can be thought of as families of kernels, induced by parameters such asb

and  . In particular parameter  in the Gaussian and Laplacian kernels is generally known as

the bandwidth, and it controls the distance at which nearby input points can a�ect each other.
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2.3 Kernel Ridge Regression

We now go back to the supervised learning problem, and study an instance of learning in which

we make the following three modeling choices:

1. The hypothesis space is a RKHSH, with reproducing kernel k;

2. The loss function is the squared loss̀(y; y0) = ( y � y0)2;

3. Tikhonov regularization is used to prevent over�tting.

The resulting algorithm, whose explicit solution is given in Equation (2.33) is called kernel

ridge regression, or KRR.

Given a training set Z = f (x1; y1); : : : ; (xn ; yn )g the minimization problem can be written

out as

min
f 2H

Ê� ; Ê� (f ) =
1
n

nX

i =1

(f (x i ) � yi )2 + � kf k2
H ; � > 0 (2.26)

The function Ê� : H ! R [ f + 1g is strictly convex thanks to the regularizer, it is proper since

Ê� (f ) < + 1 for at least one f 2 H (and in fact every f 2 H is �nite), coercive and continuous.

Then the existence and uniqueness of a solution are guaranteed (Boyd et al.,2004).

A hint towards the particular form of the solution is given by the representer theorem, which

is stated below for a slightly more general setting than the one we will be considering.

Theorem 2.3: Representer theorem (Schölkopf, Herbrich, et al. (2001))

Assuming a strictly monotonic increasing regularizer function 
 and an arbitrary loss

function ` : Y � Y ! R, then each minimizer f 2 H of the regularized empirical risk

1
n

nX

i =1

`(f (x i ); yi ) + 
( kf kH ) (2.27)

can be represented in the form

f̂ � (x) =
nX

i =1

� i k(x i ; x) (2.28)

for some� i 2 R.

Hence we can represent the unique solution to our problem, which we will denote aŝf � 2 H

to emphasize the dependence on the regularization parameter� , as a linear combination of the

kernel computed on then training points f x i gn
i =1 .
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De�nition 2.4 (Kernel matrix): Given a dataset with n points f (x1; y1); : : : ; (xn ; yn )g

with x 2 X ; y 2 Y and a reproducing kernelk, denote then � n matrix whose i; j -th entry

is given by k(x i ; x j ) as K . Such matrix will be referred to as the kernel matrix.

Provided with the de�nition of the kernel matrix we can write the minimization problem in

a more explicit way. First note that from Theorem 2.3,



 f̂ �





2

H
=







nX

i =1

� i k(x i ; �)







2

H

=
nX

i;j =1

� i � j k(x i ; x j ) = h�; K � i Rn : (2.29)

Then we can rewrite (2.26) as a minimization not over f 2 X but over the parameter vector

� = [ � 1; : : : ; � n ]> 2 Rn :

�̂ � = arg min
� 2 Rn

1
n

kK � � ŷk2
Rn + � h�; K � i Rn (2.30)

where we denote by ^y the vector of all labels ŷ = [ y1; : : : ; yn ]> .

Solving the problem of (2.30) is simple: compute the gradient with respect to� and set it

to zero to get

K 2� � K ŷ + n� K � = 0 ;

which always admits the solution of

(K + n� I )� = ŷ: (2.31)

This is a n � n linear system which can also be written explicitly for � as

�̂ � = ( K + n� I ) � 1ŷ: (2.32)

Hence the direct solution to the regularized ERM problem of Equation (2.26) is given by

f̂ � (x) =
nX

i =1

(�̂ � ) i k(x i ; x); �̂ � = ( K + n� I ) � 1ŷ: (2.33)

Note that in (2.32) the invertibility of K + n� I is guaranteed by the positive semi-de�niteness

of K and � > 0, so the regularizer improves the solution's stability.

Spectral �ltering A useful way of analyzing the improvement to stability provided by

regularization, is to look at the spectrum of the kernel matrix without regularization. K can

be decomposed asK = Q� Q> with � = diag(� 1; : : : ; � n ) a diagonal matrix of decreasing

eigenvalues (� 1 � � 2 � � � � � 0), and Q an orthogonal matrix containing the corresponding
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eigenvectorsq1; : : : ; qn . Then the least squares estimator (with � = 0) is

�̂ 0 = K yŷ = Q� daggerQ> ŷ =
X

� i 6=0

1
� i

hqi ; ŷi qi ; (2.34)

where Ay denotes the pseudo-inverse of matrixA. The estimator �̂ 0 is il l-conditioned : tiny

perturbations in the data, in correspondence of the small eigenvalues, have an outsized in�uence

on the result. With Tikhonov regularization, Equation ( 2.34) becomes

�̂ � = ( K + n� I ) � 1ŷ =
nX

i =1

1
� i + n�

hqi ; ŷi qi (2.35)

such that the in�uence of eigenvalues which are smaller thann� gets essentially �ltered out

(for � i � n� then 1
� i + n� � 1

n� ), while larger eigenvalues are una�ected (for� i � n� then
1

� i + n� � 1
� i

). The point of view of spectral �ltering is that many di�erent regularization methods

can be expressed by de�ning a suitable �lter function of the kernel G� : R ! R, which acts on

its spectrum. Using the eigendecomposition ofK then

G� (K ) =
nX

i =1

qi G� (� i )q>
i : (2.36)

For Tikhonov regularization we have seen the following �lter function

G� (� i ) =
1

� i + n�
; (2.37)

where � controls the magnitude of the minimum eigenvalues ofG� (K ). In Section 2.4.1 we will

see another spectral �lter which works on a very di�erent class of algorithms.

Condition number By ensuring that no eigenvalues of the regularized kernel matrixK � :=

K + n� I are lower than a thresholdn� , small changes in the kernel which inevitably occur due

to the noisy empirical data will not alter the solution excessively. A quantitative formulation of

this principle is through the condition number of K � .

De�nition 2.5 (Condition number): The condition number of a symmetric matrix A

is

� (A) =
j� max (A)j
j� min (A)j

(2.38)

where � max (A) and � min (A) denote the largest and smallest eigenvalues ofA respectively.

A lower condition number implies a lower sensitivity of the linear system solution to small

changes in the input. As we will see later, the condition number also has an impact on the
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time complexity for iterative solutions to the linear system. The following lemma shows how

regularization lowers the condition number of the linear system needed for solving KRR.

Lemma 2.1 (Condition number of KRR): Tikhonov regularization improves the

condition number:

� (K + n� I ) � � (K ) (2.39)

for � > 0.

Proof of Lemma 2.1: For conciseness let� 1 := � max (K ), � n := � min (K ) and  := n� .

The condition number of the regularized matrix is

� (K + n� I ) =
� 1 + 
� n + 

:

Knowing that � 1 � � n , � 1 � 0 and  > 0

� 1 + 
� n + 

�
� 1

� n
=

� 1� n + � n � � 1� n � � 1
� n (� n + � 1)

=
 (� n � � 1)
� n (� n + � 1)

� 0

where equality is attained only if all eigenvalues ofK are equal, in which case the condition

number is 1 anyways. �

2.3.1 Statistical considerations

From a statistical point of view the properties of the estimator f̂ � are well studied, seee.g.

Steinwart, Hush, et al. (2009), Caponnetto et al. (2007), and Shalev-Shwartz et al. (2014).

In particular we are interested in the expected riskE(f̂ � ) compared to that of the regression

function f � . However, since the hypothesis spaceH is not dense inL 2(X ; � X ), approaching f �

will not be possible in general. We therefore have to consider a di�erent version of the excess

risk (see Equation (2.11)) f H , which is computed asf H = inf f 2H E(f ). Following Caponnetto

et al. (2007), the following assumptions need to hold in order to prove the basic statistical

bounds comparing the risks off̂ � and f H .

The �rst assumption guarantees that the reproducing kernel is bounded

Assumption 2.1. A constant � � 1 exists such thatk(x; x ) � � 2 for any x 2 X .

Another basic assumption, whose need is clearly necessary from the introduction of this

section, guarantees the existence off H

Assumption 2.2. Consider RKHS H with kernel k, we assume there existsf H 2 H such that

E(f H ) := inf
f 2H

E(f ): (2.40)
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We will denote byR H (f ) = E(f ) � E (f H ) the excess risk of an estimatorf with respect to f H .

The last assumption is on the data distribution � , and in particular on the conditional

probability � (yjx)

Assumption 2.3. Constants �; b such that 0 � � � b exist such that, for any x 2 X the

following holds Z

Y
jy � f H (x)jp d� (yjx) �

1
2

p!� 2bp� 2; 8p � 2: (2.41)

This assumption holds for example wheny is bounded, sub-Gaussian or sub-exponential.

Then, the following proposition holds

Theorem 2.4: from Caponnetto et al. (2007)

Let f̂ � be the KRR estimator of (2.33), and � 2 (0; 1]. Under Assumptions 2.1 to 2.3

outlined above, the following holds with probability at least 1 � �

R H (f̂ � ) . � +
1

n�
log

1
�

; (2.42)

where the symbol. signi�es that we ignored constants not depending onn; � or � .

From this theorem we can derive the regularizer� which allows to minimize the risk

Corollary 2.3.1. Choosing � n such that

� n =
1

p
n

;

with probability at least 1 � � the following holds

R H (f̂ � ) .
1

p
n

log
1
�

: (2.43)

Under additional regularity assumptions this bound can be re�ned in order to show a

dependency on the intrinsic di�culty of the problem. For more details, see Caponnetto et al.

(2007) and Steinwart, Hush, et al. (2009).

2.3.2 Computational considerations

Once again we assume to have a training set ofn points, and the associated kernel matrix

K 2 Rn� n . In this section we look at di�erent ways in which one can solve the minimization

of (2.30) to get the parameter estimate �̂ � , and compare them from the point of view of

computational e�ciency.

The �rst possibility is to solve the linear system directly. To do so, one must �rst calculate

and store every entry ofK . Since there aren2 entries, assuming the computational cost for

one entry is d, computing K requires O(dn2) time units and O(n2) space units. The cost for
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a single kernel entry will depend on the choice of kernel, but for the common options of the

linear (2.22), polynomial (2.23) or Gaussian(2.24) kernels, it will depend on the dimensionality

of x 2 X � Rd. Once K has been computed, a linear system solver comes into play which will

typically use the Cholesky (which has an asymptotic cost ofO(1=3n3) operations) or LU (with

an asymptotic cost of O(2=3n3) operations) decompositions instead of invertingK directly

which is slower and less numerically stable. Since this operation has higher time complexity

than the kernel computation, the �nal cost of the direct solution is

O(n3) time O(n2) space: (2.44)

An alternative to direct inversion is to solve (2.30) using iterative optimization methods,

which are the focus of the next section.

2.4 Iterative Optimization

In this section we will provide some background on algorithms which solve a minimization

problem by iteratively computing better and better solutions. The �rst algorithm is gradient

descent (GD) which can be applied to all smooth problems (for which a gradient exists). Then

we will present the conjugate gradient (CG) method, which is more specialized and can be

applied to the solution of symmetric and positive de�nite linear systems.

For simplicity, we will take as an example the problem of �nding x such that

Ax = b; with A> = A; A � 0: (2.45)

for a matrix A 2 Rn� n and b 2 Rn . Starting from an estimate of the solution x0, at each

iteration we will compute a new candidate x i +1 of the form

x i +1 = x i + � i di (2.46)

where � i is a scalar anddi a vector of the same size asx. Denote the error at iteration i by

ei = x i � A � 1b, and the residual by r i = b� Ax i = � Aei .

We can rewrite the problem of Equation (2.45) as an equivalent quadratic problem:

arg min
x

f (x) = arg min
x

�
1
2

x> Ax � b> x
�

: (2.47)

2.4.1 Gradient Descent for KRR

Gradient descent can solve the linear system of Equation (2.45) by following the gradient along

the parabola de�ned in Equation (2.47). The GD algorithm is not limited to such highly

structured problems, as it is well-de�ned for minimizing any smooth function.
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Starting from an arbitrary point x0, which can be taken equal to 0 for simplicity, we will

take a series of stepsx1; : : : ; x t by moving along the gradient of f , until some convergence

criterion is reached (e.g. the last two points are very close to each other).

The gradient of f is

f 0(x) = Ax � b; (2.48)

hence our update steps (in the direction of steepest descent, so against the gradient) should be

of the form

x i +1 = x i +  i (Ax i � b): (2.49)

Note that we never need to invert A, and in particular we don't even need to know A itself: it

is su�cient to be able to multiply the matrix A with an arbitrary vector. Since the problem

is convex, the GD iterations are known to converge to the unique minimizer. However, the

speed and accuracy of this convergence crucially depend on the step size . If  is too small

then a huge number of iterations will be needed; if it is too large then the algorithm may

oscillate around the minimum without every being able to reach it precisely. However, whenA

is positive de�nite, the optimal step size can be determined to be

 i =
r >

i r i

r >
i Ar i

: (2.50)

Take � to be the condition number of A:

� =
� max (A)
� min (A)

; (2.51)

and denote theA-norm of a vector v: kvkA = v> Av. Then it can be proven (Boyd et al., 2004)

that the error of GD for this problem decreases with each step as

kei kA �
�

� � 1
� + 1

� i

ke0kA : (2.52)

Example 2.1: The empirical risk minimization problem of the previous section

min
f 2H

Ê(f ); Ê(f ) =
1

2n

nX

i =1

(f (x i ) � yi )2 (2.53)

can be expressed as the minimization of a �nite dimensional quadratic problem through

the representer theorem

min
� 2 Rn

Ê(� ); Ê(� ) =
1

2n
kK � � ŷk2: (2.54)
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Note that, since K is positive semi-de�nite, Equation (2.54) de�nes an equivalent problem

to Equation ( 2.47). The gradient of Ê(� ) is

r Ê(� ) =
1
n

(K � � ŷ) =
1
n

(K � � ŷ) (2.55)

and the gradient descent (GD) algorithm gives the following iteration for solving (2.54)

� i = � i � 1 �

n

(K � i � 1 � ŷ); (2.56)

with step size  > 0, and � 0 = 0. Computationally, the GD algorithm still requires

constructing the full kernel matrix. Each iteration (see (2.56)) requires multiplying the

kernel matrix with a vector, an operation which has a O(n2) asymptotic cost. Similarly,

determining  i requires a kernel-vector multiplication per Equation (2.50). Assuming

we wish to �nd a solution with a certain accuracy � > 0 (i.e. kei k � � ke0k)). From

Equation (2.50) we can determine the maximum number of iterationst needed to achieve

that accuracy:

t =
�

1
2

� ln
1
�

�
(2.57)

with � the condition number of K . The �nal asymptotic complexity of the GD algorithm

for KRR is

O(tn 2 + dn2) time O(n2) space: (2.58)

For large datasets, wheren � t, this is an improvement over the direct solution. In

practice the bottleneck becomes the space complexity: for a large but not huge dataset of

500 000 points, the kernel matrix occupies 931 GB of memory!

2.4.2 Implicit regularization

In Section 2.3, we have remarked that the unregularized regression can be ill-conditioned and

lead to over�tting. We have thus introduced a Tikhonov regularizer which penalizes functions f

with large norm, and have seen how the regularizer also stabilizes the direct solution of a linear

system to obtain �̂ � . Here we shall see how it is possible to introduce a similar regularization

implicitly through the optimization algorithm. Intuitively we don't care about reaching the

true empirical risk minimizer: we are interested in minimizing the expected risk, and wish to

avoid over�tting to the noise in the empirical data. Implicit regularization studies how early

stopping of the GD iterations regularizes the �nal solution similarly to Tikhonov regularization.

By induction, one can show that the iteration of (2.56), with � 0 = 0 is equivalent to

� t = 
t � 1X

i =0

(I �  K ) i ŷ (2.59)
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where we have rescaled the step-size for the sake of brevity. Now recall main property of the

Neumann series: supposingA a bounded linear operator, denoting byk�k the operator norm

for such operator, if kAk < 1 then

1X

i =0

(I � A) i = A � 1: (2.60)

Importantly, if we consider a truncated version of (2.60) we obtain an approximation of the

matrix inverse
tX

i =0

(I � A) i � A � 1: (2.61)

We can view the GD iteration as a spectral �lter on the matrix K , which now depends ont

(the number of iterations) instead of � . Using spectral calculus we have that

� t = Gt (K )ŷ; with Gt (� i ) = 
t � 1X

j =0

(1 � � i ) j : (2.62)

and the geometric series

Gt (� i ) =
1 � (1 � � i )t

� i
(2.63)

converges to 1=� i as t goes to 1 . In fact, it can be formally shown that the behavior of

the regularization parameter t behaves as 1=� at its asymptotes (although a slightly di�erent

regularization behavior occurs elsewhere (Yao et al.,2007)).

2.4.3 Conjugate gradient method

The conjugate gradient method (CG) (Hestenes et al.,1952; Shewchuk,1994) is a well-known

e�cient iterative algorithm for solving symmetric and positive de�nite linear systems of the

form of Equation (2.45). For the following we must de�ne A-orthogonal or conjugate vectors

di ; dj if d>
i Adj = 0.

The conjugate gradient method puts the constraint that once a direction di has been used,

it should not be used again: the directions must be conjugate to each other. Furthermore

the error term at iteration i must be conjugate to the directions used at previous iterations:

d>
i Aei +1 = 0. From this we can obtain an explicit form for the coe�cients � i :

d>
i A i ei +1 = d>

i A(ei + � i di ) = 0 = ) � i = �
d>

i Aei

d>
i Adi

=
d>

i r i

d>
i Adi

: (2.64)

The following lemmas can be founde.g. in Shewchuk (1994).
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Proposition 2.4.1

A procedure with � i de�ned as in Equation (2.64) and conjugate directions converges to

the true value x in n steps.

Proof of Proposition 2.4.1 : The error e0 can be expressed as a linear combination of

n directions

e0 =
n� 1X

i =0

� i di :

Multiplying both sides by d>
j A

d>
j Ae0 =

n� 1X

i =0

� i d>
j Adi = � j d>

j Adj

� j =
d>

j Ae0

d>
j Ad>

j
:

Note that by the de�nitions of ei and x i we have that

ek = e0 +
k� 1X

i =0

� i di ;

then, taking in mind A-orthogonality of directions

� j =
d>

j A(e0 +
P j � 1

i =0 � i di )

d>
j Ad>

j
=

d>
j Aej

d>
j Ad>

j

which is exactly equal to � � j in Equation ( 2.64). Hence while we are building up a solution

x, we are also decomposing the error term down to zero aftern iterations:

ek = e0 +
k� 1X

i =0

� i di =
n� 1X

i =0

� i di �
k� 1X

i =0

� i di =
n� 1X

i = k

� i di :

�

Finally we must describe how to obtain the conjugate directions. The starting point is taken

to be d0 = b� Ax 0 = r0, and further directions are derived by Gram-Schmidt orthonormalization.

For this to work the residuals must form a linearly independent basis, which can be seen by

noting that directions and residuals are orthogonal

d>
j r i = � d>

j Aei = 0 for j < i; (2.65)
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and hence by searching for new directions in the space spanned by the previous residuals wehave

that every residual is orthogonal to all previous residuals (r >
i r j = 0 ; i 6= j ). The construction of

new directions followsd0 = r0,

di = r i +
i � 1X

k=0

� ik dk : (2.66)

We can then derive the coe�cients by multiplying by Adj and using A-orthogonality:

d>
i Adj = r >

i Adj +
i � 1X

k=0

� ik d>
k Adj =) � ij = �

r >
i Adj

d>
j Adj

(2.67)

where � ij is only de�ned for i > j . Equation (2.67) seems to imply that computing a new

direction depends on all the previous ones. We will now see how several terms simplify,

and knowledge of previous directions will not be needed. Considerr j +1 = r j � � j Adj , then

r >
i r j +1 = r >

i r k � � j r >
i Adj . We can thus write

r >
i Adj =

1
� j

(r >
i r j � r >

i r j +1 ) =

8
>>>><

>>>>:

1
� i

r >
i r i ; for i = j

� 1
� i � 1

r >
i r i ; for i = j + 1

0 otherwise

Then we can write the direction coe�cients as

� ij = �
r >

i Adj

d>
j Adj

=

8
><

>:

1
� i � 1

r >
i r i

d>
i � 1Ad i � 1

; for i = j + 1

0; for i > j + 1

where the dependence is only on the last direction. We can simplify even further, denoting

� i = � i;i � 1. We �rst need a simple proposition

Proposition 2.4.2

The following holds

d>
i r i = r >

i r i (2.68)

Proof of Proposition 2.4.2 : Consider the Gram-Schmidt procedure of Equation (2.66),

and take the inner product with residual r j

d>
i r j = r >

i r j +
i � 1X

k=0

� ik d>
k r j :
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Taking j = i , the second term becomes zero by Equation (2.65) and we have

d>
i r i = r >

i r j :

�

Then

� i =
d>

i � 1Adi � 1

d>
i � 1r i � 1

r >
i r i

d>
i � 1Adi � 1

=
r >

i r i

r >
i � 1r i � 1

: (2.69)

Algorithm 1 CG algorithm.
1: function CG(A 2 Rn� n , b 2 Rn )
2: d0  b� Ax 0

3: r0  d0

4: for i = 0 ; : : : ; n � 1 do

5: � i  r >
i r i

d>
i Ad i

. by Equations (2.64) and (2.68)

6: x i +1  x i + � i di

7: r i +1  r i � � i Adi

8: if kr i +1 k < � then
9: exit loop

10: end if
11: � i +1  

r >
i +1 r i +1

r >
i r i

12: di +1  r i +1 + � i +1 di

13: end for
14: return xn� 1

15: end function

The complete algorithm is shown in Algorithm 1. Like the gradient descent algorithm, CG

requires a single matrix-vector multiplication per iteration (see Line 7). Since this is the most

expensive operation the time complexity of CG isO(T n2). On the other hand, the number of

iterations T required for convergence can be much smaller. The decrease in error norm as a

function of iterations depends now on the square-root of the condition number:

kei kA � 2

 p
� (A) � 1

p
� (A) + 1

! i

ke0kA : (2.70)

Fixed a desired accuracy� > 0, the maximum number of iterations needed to obtain a solution

with that accuracy is

T =
�

1
2

p
k ln

2
�

�
(2.71)

which is a strictly better dependency on the condition number than the GD algorithm (see

Equation (2.57)).
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2.5 Approximations to KRR

2.5.1 Random Fourier Features

Consider the feature-map view on reproducing kernel Hilbert spaces, where we have seen that,

given a reproducing kernelk, there exists a function � : X ! H such that

k(x; x 0) =


� (x); � (x0)

�
H : (2.72)

Random Fourier features were introduced by Rahimi and Recht in 2007 (Rahimi et al.,2008)

as a way to approximate the inner product (whose dimensionality can be in�nite), with a �nite

number of randomized feature maps:



� (x); � (x0)

�
H � z(x)> z(x0) (2.73)

for some function z : X ! RR . Then the KRR solution of ( 2.28) becomes

f̂ (x) =
nX

i =1

� i k(x i ; x) =
nX

i =1

� i h� (x i ); � (x)i H �
nX

i =1

� i z(x i )> z(x) = � > z(x); (2.74)

where the explicit form of � is derived in Equations (2.82) to ( 2.84). That is, once the has been

mapped into this R-dimensional space usingz, one simply needs to solve a linear model inR

dimensions to obtain � 2 RR . If R � n this is computationally more convenient than solving

the original problem!

The theory of random Fourier features was originally developed for shift-invariant kernels

such as the Gaussian and Laplacian kernels, whose function given two pointsx; y only depends

on the di�erence x � x0 := � , i.e. k(x; x 0) = k0(x � x0). More recently there has been development

of random features for other types of kernels such as polynomial kernels (Kar et al.,2012; Pham

et al., 2013), additive kernels (Vedaldi et al., 2012), histogram kernels (F. Li, Ionescu, et al.,

2010), neural tangent kernels (Zandieh et al.,2021) and many more. Here we focus on shift

invariant kernels, for which deriving the form of z starts from a theorem by Bochner (Bochner,

1959)

Theorem 2.5: Bochner's Theorem

A continuous kernel function k(x; x 0) such that k is shift-invariant, is positive de�nite on

Rd if and only if it is the the Fourier transform of a �nite non-negative measure on Rd.

This implies that k is the Fourier transform of a non-negative measurep:

k(x; x 0) = k0(� ) =
Z

Rd
p(! ) exp(� ih!; � i ) d!: (2.75)
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Without loss of generality we can assumep to be a probability measure, and hence write(2.75)

as an expectation

k0(� ) =
Z

Rd
p(! ) exp(� ih!; � i ) d! = E! [exp(� ih!; � i )]: (2.76)

The �rst ingredient for de�ning random Fourier features is the approximation of expecta-

tion (2.76) with a Montecarlo sample, which allows to expressE! [exp(� ih!; � i )] as a �nite-

dimensional inner product

k(x; x 0) = E! [exp(� ih!; � i )]

�
RX

i =1

exp(� ih! i ; x � x0i )

=

2

6
6
6
4

1p
R

exp(� ih! 1; xi )
...

1p
R

exp(� ih! R ; xi )

3

7
7
7
5

> 2

6
6
6
4

1p
R

exp(ih! 1; x0i )
...

1p
R

exp(ih! R ; x0i )

3

7
7
7
5

:

The other ingredient is the relationship between speci�c probability measures and well-known

kernels

Lemma 2.2: Let ! � N (0; I d), k a Gaussian kernel with bandwidth equal to one. Then

E! [exp(� ih!; x � x0i )] = k(x; x 0). Note that this is an instance of a well-known result,

essentially stating that the Fourier transform of the Gaussian is also Gaussian.

Proof of Lemma 2.2:

E! [exp(� ih!; � i )] =
Z

Rd
p(! ) exp(� ih!; � i ) d!

= (2 � ) � d=2
Z

Rd
exp(�

1
2

h!; ! i ) exp(� ih!; � i ) d!

= (2 � ) � d=2
Z

Rd
exp(�

1
2

(h!; ! i � 2ih!; � i � h �; � i ) �
1
2

h�; � i ) d!

= exp( �
1
2

h�; � i )(2� ) � d=2
Z

Rd
exp(�

1
2

(h! � i�; ! � i� i )) d !

= exp( �
1
2

h�; � i )

where we have used the de�nition of the Gaussian probability density in the second step,

and noted in the last step noted that the integral's argument is an unnormalized Gaussian

density which must amount to (2� )d=2. �

Finally we turn to the problem of computing (2.76) in practice. To do so, note that we are

interested in cases where both the kernelk and the probability distribution p are real-valued.
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We can use Euler's formula to get

Z

Rd
p(! ) exp(� ih!; � i ) d! =

Z

Rd
p(! )[cos(h!; � i ) � i sin(h!; � i )] d!

=
Z

Rd
p(! ) cos(h!; � i ) d! � i

Z

Rd
p(! ) sin(h!; � i ) d!;

where the second integrand is odd, so its integration overRd is 0. Hence to de�ne the feature

map z : Rd ! RR such that z(x)> z(x0) � k(x; x 0), consider the following lemma.

Lemma 2.3: Let ! and b be two random variables such that! � p(! ) and b � U (0; 2� ).

De�ne

z! (x) =
p

2 cos(! > x + b): (2.77)

Then

E!;b [z! (x)z! (x0)] = E! [cos(! > (x � x0))] = k(x; x 0): (2.78)

Proof of Lemma 2.3:

E!;b [z! (x)z! (x0)] = E!;b [
p

2 cos(! > x + b)
p

2 cos(! > x0+ b)]

Now let e = ! > x + b and f = ! > x0+ b, and recall the trigonometric identity cos(x + x0) =

cos(x) cos(x0) � sin(x) sin(x0). Then

2 cos(e) cos(f ) = (cos( e) cos(f ) � sin(e) sin(f )) + (cos( e) cos(f ) + sin( e) sin(f ))

= (cos(e) cos(f ) � sin(e) sin(f )) + (cos( e) cos(� f ) � sin(e) sin(� f ))

= cos(e+ f ) + cos(e � f ):

Substituting back into the original expression

E!;b [z! (x)z! (x0)] = E!;b [cos(! > (x + x0) + 2 b)] + E! [cos(! > (x � x0))] :

We focus on the �rst term, which is equal to E!

h
Eb[ cos(! > (x + x0) + 2 b) j ! ]

i
. Once again

letting g = ! > (x + x0)

Eb[ cos(g + 2b) j ! ] =
Z 2�

0

1
2�

cos(g + 2b) db =
1

2�

�
sin(g + 2b)

�
�
�
�

2�

0

�
= 0

since the sine function is periodic with period 2� . By substituting back we recover the

statement of the hypothesis. �
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Finally we can de�ne the map z as

z(x) =

2

6
6
6
4

1p
R

z! 1 (x)
...

1p
R

z! R (x)

3

7
7
7
5

(2.79)

for which

z(x)> z(x0) =
1
R

RX

i =1

z! i (x)z! i (x
0) by ( 2.79)

=
1
R

RX

i =1

2 cos(! >
i x + bi ) cos(! >

i x0+ bi ) by ( 2.77)

� E! [cos(! > (x � x0))] Lemma 2.3

= k(x; x 0):

Random Fourier Features for KRR The computational bene�t of random features comes

from �undoing� the kernel trick to go from the direct KRR solution of (2.32) to the solution of

linear ridge regression where all data pointsx i are replaced byz(x i ), for i = 1 ; : : : ; n. We can

do this directly starting from the KRR solution

f̂ � (x) =
nX

i =1

k(x; x i )( �̂ � ) i ; �̂ � = ( K + n�I ) � 1ŷ; (2.80)

replacing the kernel function with a dot product over feature maps (where we denote the feature

map evaluated at all training points by � = [ � (x1); : : : ; � (xn )]> )

f̂ � (x) =
nX

i =1

h� (x); � (x i )i H (�̂ � ) i ; �̂ � = (�� > + n�I ) � 1ŷ; (2.81)

and replacing the true - in�nite dimensional - feature maps with their approximate and �nite

counterparts (as before, denoteZ = [ z(x1); : : : ; z(xn )]> 2 Rn� R )

f̂ � (x) �
nX

i =1

hz(x); z(x i )i (�̂ � ) i ; �̂ � = ( ZZ > + n�I ) � 1ŷ (2.82)

= z(x)> Z (ZZ > + n�I ) � 1ŷ (2.83)

= z(x)> (Z > Z + n�I ) � 1Z > ŷ (2.84)

where in the last step we have used the push-through identity. Notice how we have gone from

needing to invert a n � n matrix in (2.82) and (2.83) to a R � R matrix in (2.84). SinceR � n,

this represents a big computational speed-up. The asymptotic computational complexity of
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solving KRR with random features is

O(R3) time O(R2 + nR) space (2.85)

for the direct solution of (2.84). To control the tradeo� between fast but approximate and

exact but slow solutions, one can use parameterR: the number of random features. In fact

it has been shown (Rudi and Rosasco,2017) that a number of R = O(
p

n log(n)) random

features su�ces to ensure that the generalization error of RFF-KRR decreases in the same way

(i.e. decreases asO( 1p
n )) as the generalization error of the full KRR algorithm. If we use this

random features budget, we obtain the following asymptotic complexity:

O(n
p

n log3(n)) time O(n
p

n log(n)) space (2.86)

which is strictly better than that of full KRR.

2.5.2 The Nyström Method

Another approach to approximating the KRR estimator which was introduced by Williams

et al. (2001) and Smola et al. (2000) is the Nyström method. It considers a variant of ERM,

where instead of minimizing on the whole spaceH, a subspaceB � H is used.

From the representer theorem (2.3) we know that

f̂ =
nX

i =1

� i k(x i ; �) =
nX

i =1

� i � (x i ) = � > � 2 spanf � (x1); : : : ; � (xn )g (2.87)

so the regularized ERM solution of (2.33) belongs to the spaceH n = spanf � (x1); : : : ; � (xn )g.

Hence choosingB = H n will give the same solution as if considering the wholeH . The Nyström

estimator comes from considering instead a subset of the training points

f ex1; : : : ; exm g � f x1; : : : ; xng; m � n; (2.88)

de�ning B = H m = spanf � (ex1); : : : ; � (exm )g and proceeding to minimize over the new space

ef � = arg min
f 2H m

eE� ; eE� (f ) =
1
n

nX

i =1

(f (x i ) � yi )2 + � kf k2
H m

: (2.89)

The points ex1; : : : ; exm are called Nyström centers, inducing points or landmarks, and they

can be picked uniformly at random, or using more complex schemes such as leverage score

sampling (Rudi, Calandriello, et al., 2018). By the representer theorem,f 2 H m implies that it

can be written as

f =
mX

i =1

� i k(ex i ; �) (2.90)
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for any � 2 Rm , (keep in mind that k(ex i ; �) denotes partial application of the kernel function and

is equivalent to kex i
2 H ) and its norm will be kf k2

H m
= � > K mm � where the entries of the kernel

matrix K mm 2 Rm� m are (K mm ) i;j = k(ex i ; ex j ). Finally, we will use the kernel matrix between

the whole training set and the Nyström centersK nm 2 Rn� m such that (K nm ) i;j = k(x i ; ex j ).

With these de�nitions we can rewrite the empirical risk ( 2.89) as a minimization over �

e� � = arg min
� 2 Rm

1
n

kK nm � � ŷk2 + �� > K mm �: (2.91)

Once again, taking the gradient of (2.91) and setting it to zero the unique solution is obtained:

ef � =
mX

i =1

( e� � ) i k(ex i ; �); e� � = ( K >
nm K nm + n� K mm ) � 1K >

nm ŷ; (2.92)

where invertibility is guaranteed if K mm is positive de�nite, otherwise the pseudo-inverse can

be used instead. Note how the linear system which needs to be solved is now of dimension

m2 instead of n2, and the full kernel matrix K does not need to be computed. Instead, one

will only compute the matrix K nm which contains only a small subset of columns. Further

note that when m = n, we recover the full KRR solution. The direct solution of (2.92) has an

asymptotic cost of

O(m3 + nm2) time O(mn) space: (2.93)

Similarly to random Fourier features, the number of Nyström points m controls the tradeo�

between speed and accuracy. We will see in Chapter3 that m = O(
p

n) centers are su�cient

for strong theoretical guarantees, which brings the asymptotic cost of Nyström KRR down to

O(n2) time O(n
p

n) space: (2.94)

Again in Chapter 3 we will see how these bounds can be lowered even further.
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Chapter 3

Fast and Scalable Kernel Methods

In this chapter we build upon the foundations introduced in Chapter 2, to describe the

algorithmic details, theoretical underpinnings and e�cient implementation of a fast kernel ridge

regression solver. The algorithm we are going to present here, is named Falkon and was �rst

introduced in Rudi, Carratino, et al. ( 2017) where learning bounds were derived. Improvements

in the computational e�ciency and scalability of the algorithm, along with a comprehensive

suite of experiments which compare Falkon to other state of the art solvers, were made in the

work of the present chapter which has also been published in Meanti, Carratino, Rosasco, et al.

(2020).

3.1 Approximate Kernel Methods

As we have seen in Section2.5, the full kernel ridge regression (KRR) algorithm does not scale

to datasets with more than a few hundred thousand points. Therefore many ways to derive

approximate solutions have been proposed in the literature. As we have seen in the previous

chapter, they broadly fall into the category of random features (Rahimi et al., 2008; Rahimi

et al., 2009; Yang et al., 2012; Le et al., 2013; B. Dai et al., 2014; Cutajar, Bonilla, et al., 2017;

Z. Li, Ton, et al., 2019), or the Nyström method. Starting from Williams et al. ( 2001) and

Smola et al. (2000) who �rst proposed it for approximating KRR, there have been several papers

analyzing its theoretical performance: Bach (2013) provided sharp bounds in the �xed design

setting, Gittens et al. (2016) instead focused on bounding the kernel matrix approximation,

while Rudi, Camoriano, et al. (2015) provided error bounds for Nyström KRR in the more

general random design setting. An important variant of the low-rank Nyström approximation

is the hierarchical low-rank approximation (J. Chen et al., 2017) where the kernel matrix

is �rst split into hierarchical blocks, each of which is approximated using Nyström. Similar

decompositions based on partitioning and low-rank approximation have also been studied

from both empirical and theoretical points of view in Si et al. (2017), Thomann et al. (2017),

Carratino et al. ( 2021), and Müecke (2019) among others. As was mentioned in the previous
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chapter, one crucial aspect of the Nyström approximation is the choice of the landmark points.

The most studied options are uniform random sampling and leverage score sampling (Rudi,

Calandriello, et al., 2018), but a wide variety of heuristic methods � summarized in a paper by

Kumar et al. (Kumar et al., 2012) � has been employed over time. The Nyström method has

also been used for di�erent learning algorithms such as k-means (Calandriello and Rosasco,2018;

S. Wang et al., 2019), kernel PCA (Sterge et al., 2020), supervised learning with general loss

functions (Della Vecchia et al., 2021; Marteau-Ferey, Ostrovskii, et al., 2019; Marteau-Ferey,

Bach, et al., 2019), kernelized bandits (Calandriello, Carratino, et al., 2019; Calandriello,

Carratino, et al., 2020), etc.

The Bayesian equivalent of KRR, namely Gaussian process regression (GPR), has also seen

the development of approximate solutions which closely resemble their frequentist counterparts,

with the added twist of estimating the variance and optimizing hyperparameters. Broadly

speaking, low-rank approximations for GPR fall under the name ofsparseGP regression (SGPR).

Quiñonero-Candela et al. (2005) details the following SGPR algorithms: (SoR) (Silverman,

1985), the deterministic training conditional (DTC) (Seeger et al., 2003), the fully independent

training conditional (FITC) (Snelson et al., 2005), which were followed by several algorithms

which used variational inference to optimize a Nyström-like model (Titsias,2009; Hensman, Fusi,

et al., 2013; Hensman, Durrande, et al.,2017) (SVGP and its variants). Another line of research

which has considered sparse GP regression is structured kernel interpolation (SKI) (Wilson and

Nickisch, 2015) which imposes a grid-like (Kronecker and Toeplitz) structure on the inducing

points in order to exploit fast matrix vector multiplications which are only possible with such

structure. Improvements to this method have been proposed in Gardner, Pleiss, R. Wu, et al.

(2018), Gardner, Pleiss, Bindel, et al. (2018), and K. Wang et al. ( 2019). See H. Liu, Y.-S. Ong,

et al. (2020) for a recent review on scalable GPR.

Given recent theoretical results showing that approximate KRR models can provide huge

computational gains with no loss of accuracy (see for example Bach (2013), Rudi, Camoriano, et

al. (2015), Y. Sun et al. (2018), and Z. Li, Ton, et al. ( 2019), we take the practical consequences

of this fact to the extreme, developing and testing large scale kernel methods that can run

e�ciently on datasets with billions of points.

Following the Falkon algorithm (Rudi, Carratino, et al., 2017) we use a Nyström approach

to reduce the problem size and also to derive a preconditioned gradient solver for kernel

methods. We focus on smooth loss functions (in particular the squared and logistic losses),

and consider iterative solvers based on the conjugate gradient (CG) method (Saad,2003),

see Section2.4.3 for more details. Making these algorithmic ideas practical and capable of

exploiting the GPU, requires developing a number of computational solutions, borrowing

ideas not only from optimization and numerical analysis but also from scienti�c and high

performance computing (Ltaief et al., 2011; Anzt et al., 2015; Catanzaro et al., 2008). The

preconditioned conjugate gradient solver (Cutajar, Osborne, et al.,2016) used is tailored to take
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full advantage of both GPU acceleration and parallelization with multiple GPUs. To achieve

this, we �nd it necessary to devise out-of-core variants of common linear algebra operations to

guarantee optimal hardware utilization. We further optimize the numerical precision of di�erent

operations and investigate ways to perform matrix-vector multiplications most e�ciently. The

corresponding implementation is then tested extensively on a number of datasets ranging

from millions to billions of points. For comparison, we focused on other available large scale

kernel implementations that do not require data splitting, or multiple machines. In particular,

we consider Eigenpro (Ma et al.,2019) which is an approach similar to the one we propose,

GPyTorch (Gardner, Pleiss, Bindel, et al., 2018) and GP�ow (Wilk et al., 2020) which come

from the Gaussian process literature. While these latter solutions allow also for uncertainty

quanti�cation, we limit the comparison to prediction. We perform a systematic empirical

evaluation running an extensive series of tests. Empirical results show that indeed our approach

can process huge datasets in minutes and obtain state of the art performances, comparing

favorably to other solutions, both in terms of e�ciency and accuracy. More broadly, these

results con�rm and extend the observations made in Ma et al. (2017) and Ma et al. (2019), that

kernel methods can now be seamlessly and e�ectively deployed on large scale problems. To

make these new solutions readily available, the code used in our experiments is distributed as an

easy to use library developed on top of PyTorch (Paszke et al.,2019), available at the following

link https://github.com/falkonml/falkon . The rest of this chapter is organized as follows. In

Section 3.2, we provide some background on the considered approaches to kernel learning. In

Section3.3, we detail the main algorithmic solutions in our implementation, whereas Section3.4

is devoted to an empirical evaluation of the algorithm.

3.2 The Falkon Algorithm

Falkon is an algorithm �rst proposed in Rudi, Carratino, et al. ( 2017) which combined random

projections (i.e. the Nyström method), an iterative solver and a carefully designed preconditioner

for solving the kernel ridge regression problem. Crucially, the algorithm comes with strong

theoretical guarantees: it converges to the correct solution as fast as full KRR, as long as a

large enough number of centers are chosen.

3.2.1 Preconditioning

Consider the problem of kernel ridge regression, whose solution entails inverting ann � n

matrix K + n� I . In Section 2.3 we have seen that thecondition number of this matrix is

important for (a) determining whether the matrix inverse will be stable, and (b) determining

the time complexity for iterative algorithms ( e.g. gradient descent) to compute the inverse

itself. When using an iterative solver, clearly the accuracy of the solution will also in�uence

the statistical properties of the estimator. Indeed to obtain solutions with �good� ( i.e. whose

https://github.com/falkonml/falkon
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error decreases asO(1=
p

n)) convergence properties with respect to the size of the training set,

it has been proven (Camoriano, Angles, et al.,2016; Raskutti et al., 2014) that a number of

t = O(
p

n logn) iterations of gradient descent are needed.

Naively, preconditioning can be thought of as a procedure to convert a linear system

(K + n� I )� = ŷ (3.1)

which may have a high condition number, into an equivalent one

B � 1(K + n� I )� = B � 1ŷ (3.2)

which can be solved more easily, as it has a lower condition number than the original problem.

Note that, as long asB is invertible, the solution to (3.2) is the same as the solution to the

original problem (3.1) since B � 1(K + n� I )� = B � 1ŷ =) B � 1(K + n� I � ŷ) = 0. For

preconditioning to be computationally useful, the inversion of B must be much faster than

the original problem. On the other hand, the ideal preconditioner would beB = K + n� I

which reduces the condition number to 1. These two objectives are at odds with each other,

since the ideal preconditioner is as hard to compute as the original problem, so a compromise

between them must be reached. As a side remark, note that the preconditioner of(3.2) is a left

preconditioner which may destroy the symmetric structure of matrix K + n� I , thus limiting

the applicability of specialized solvers which only work with symmetric matrices. A two-sided

preconditioner can be used instead, to preserve symmetry:

B > (K + n� I )B (B � 1� ) = B > ŷ (3.3)

where we �rst solve with respect to � := B � 1� , and then with respect to � . The ideal two-sided

preconditioner would then be

BB > = ( K + n� I ) � 1: (3.4)

E�cient preconditioner design is an important research topic, and it has been explored

for kernel ridge regression in Ma et al. (2017), Gonen et al. (2016), Cutajar, Osborne, et al.

(2016), and Avron et al. ( 2017). Part of the contribution of the Falkon algorithm was to use

the Nyström approximation both to approximate the KRR solution, and to approximate the

ideal preconditioner.

Starting from the Nyström-KRR solution, which was introduced in Equation (2.92) and

requires solving a linear system

(K >
nm K nm + �n K mm )� = K >

nm ŷ; (3.5)
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consider once again the ideal preconditioner

BB > =
�
K >

nm K nm + �n K mm

� � 1
:

Computing BB > is as hard as solving the original problem, but it can be approximated

by a second round of subsampling applied to the rows ofK nm . This leads to the Falkon

preconditioner

eB eB > =
�

n
m

K 2
mm + �n K mm

� � 1

; (3.6)

where intuitively K 2
mm � K >

nm K nm .

3.2.2 Falkon with the squared loss

The Falkon algorithm with the squared loss corresponds to preconditioned Nyström KRR solved

with the conjugate gradient method (see Section2.4.3). Given a dataset f (x i ; yi )gn
i =1 , where

we denote byX = [ x1; : : : ; xn ]> 2 Rn� d the data matrix and by ŷ = [ y1; : : : ; yn ] the labels;

regularizer � > 0, and a set ofm � n centers f ex1; : : : ; exm g � f x1; : : : ; xng sampled uniformly

at random from the training set, and denoted by X m = [ ex1; : : : ; exm ] 2 Rm� d, consider functions

of the form
ef � (x) =

mX

i =1

( e� � ) i k(x; ex i ): (3.7)

We will only consider uniform sampling of the centers in this chapter, although other more

involved sampling schemes exist and can give improved statistical guarantees (Rudi, Carratino,

et al., 2017). The m coe�cients contained in vector e� � can be obtained using the two-sided

preconditioner of Equation (3.6) to solve

eB > H eB = eB > K >
nm ŷ; with H = K >

nm K nm + �n K mm ;  = eB � 1 e� � : (3.8)

In particular, Equation ( 3.8) is not solved for directly, but iteratively, using the conjugate

gradient method.

The full algorithm, shown in Algorithm 2, comprises three main sections:

1. Center selection, where the Nyström centers are chosen either uniformly at random or

with more complex strategies;

2. Preconditioner evaluation, where the preconditioner and right-hand sideR = eB > K >
nm ŷ

are computed ahead of time;

3. Conjugate gradient, where the linear-operation eB > H eB is applied repeatedly with di�erent

candidate solutions  proposed by the CG method.
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Some of the details on computing the preconditioner function through the intermediate

variables T and A will be explained in detail in Section 3.3.1. The general strategy is as follows

eB =
1

p
n

T � 1A � 1; T = chol( K mm ); A = chol
�

1
m

T T> + � I
�

; (3.9)

where we use an upper Cholesky decomposition so thatT> T = K mm with T upper triangular,

and similarly for A. In this way, eB is never computed explicitly, but only through the triangular

matrices T, A. The Cholesky decompositionchol applied to a m � m matrix requires O( 1
3m3)

�oating point operations. Hence the total computational complexity of the Preconditioner

function is O( 4
3m3) time to perform two Cholesky decompositions and a triangular matrix

multiplication, and O(m2) space. Turning to the LinOp function, we have to solve several linear

systems involving A and T. Since these are triangular matrices, the cost of a linear solve is just

O(m2) �oating point operations. The kernel-vector multiplications at line 5 of Algorithm 2

dominate the function's cost, which totals in at O(4m2 + 2 nm). The space complexity is

dominated by operations involving the whole datasetX (at lines 5 and 8 of Algorithm 2), which

require O(nm) space when computed naively. However, notice that they always appear in a

matrix multiplication with a vector, whose result is also a vector, and hence much smaller than

n � m. For this reason it is possible to compute the kernel matrices multiplied by a vector

simultaneously, only keeping arbitrarily small blocks of the kernel itself in memory. Hence using

blocked computations (detailed in Section3.3) the total complexity of Falkon is

O(tnm + m3) time O(m2) space: (3.10)

The question remains of how to choose the number of iterationst and the number of centersm.

In the next Section we shall see how statistics can provide some answers.

3.2.3 Statistical considerations

The main di�erence between Falkon and full Nyström KRR consists in the optimization

procedure, with a novel preconditioner. For this reason, the �rst step in deriving statistical

bounds for the estimator de�ned by Algorithm 2, is to prove a relationship between the

estimator after t iterations of CG ef �;t =
P m

i =1 ( e� �;t ) i k(x; ex i ), and the Nyström-KRR estimator
ef � . In Rudi, Carratino, et al. ( 2017, Theorems 1, 2) it is proven that, under the following

assumptions which closely resemble the ones for KRR (see Section2.3): (a) the kernel function

bounded by a constant � � 1 (see Assumption2.1), (b) the existence of f H 2 H such that

E(f H ) = inf f 2H E(f ) (see Assumption 2.2) and (c) assuming constant v̂2 = 1
n

P n
i =1 y2

i (see
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Algorithm 2 Pseudocode for the Falkon algorithm. We assume without loss of generality that
the data is made of real-valued vectors, and that we have a single real-valued output label.
The �rst assumption can be easily relaxed by noting that it is only necessary to have a kernel
which can be computed between pairs of data samples, the second can also be relaxed to have
matrix-valued ŷ and some matrix-vector operations will become matrix-matrix operations. The
ConjugateGradient function implements the standard conjugate gradient algorithm for t
iterations. LinOp performs the multiplication eB > H eB� as in Equation (3.19), via matrix-vector
products.

1: function Falkon (X 2 Rn� d; ŷ 2 Rn ; �; m; t )
2: X m  RandomSubsample (X; m )
3: T; A  Preconditioner (X m ; � )
4: function LinOp ( )
5: v  A � 1
6: c  K >

nm K nm T � 1v
7: return A �> (T �> c + �n v)
8: end function
9: R  A �> T �> K >

nm ŷ
10:   ConjugateGradient (LinOp ; R; t )
11: return T � 1A � 1
12: end function
13: function Preconditioner (X m 2 Rm� d; � )
14: K mm  k(X m ; X m )
15: T  chol(K mm )
16: K mm  1=mT T> + � I
17: A  chol(K mm )
18: return T; A
19: end function

Assumption 2.3); for � 2 (0; 1], it holds with probability at least 1 � � that

R H ( ef �;t ) � 2R H ( ef � ) when (3.11)

t � logR H ( ef � ) + log

 

1 +
9� 2

�n
log

n
�

!

+ log 16v̂2:

Under the same assumptions, the authors prove the following excess risk bound

Theorem 3.1: Rudi, Carratino, et al. (2017)

Let � 2 (0; 1]. Assumey 2
�
� a

2 ; a
2

�
almost surely, a > 0. There existsn0 2 N such that, for

any n > n 0, if

� =
1

p
n

; m � 75
p

n log
48� 2n

�
; t �

1
2

logn + 5 + 2 log( a + 3 � );
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then with probability at least 1 � � ,

R H ( ef �;t ) �
c0 log2 24

�p
n

(3.12)

where constantsn0; c0 do not depend on�; m; n; t and c0 further does not depend on� .

Compare the results in this last theorem with the excess risk bounds of full KRR in

Equation (2.43) to see that the Falkon algorithm obtains the same learning rate, which is

minmax optimal (Caponnetto et al., 2007) and hence not improvable without additional

assumptions. Note that the Falkon algorithm only needsO(logn) iterations of CG to converge,

while the GD method used in (Camoriano, Angles, et al.,2016) required O(
p

n logn) iterations

for the same convergence.

Theorem 3.1 provides precise thresholds form and t in order to achieve the optimal learning

rate. In a practical setting some of the constants will remain unknown. We use asymptotic

notation to connect the computational cost of Equation (3.10) with the thresholds on m and t

to obtain the following space-time complexities:

O(n
p

n logn) time O(n) space: (3.13)

3.2.4 Falkon with self-concordant losses

The above ideas extend to the logistic loss and more generally to self-concordant loss functions,

including the softmax loss (Marteau-Ferey, Ostrovskii, et al., 2019). In this case, iterative

solvers are the default option since there is no closed form solution. The Nyström method can

be used a �rst time to reduce the size of the problem, and then a second time to derive an

approximate Newton step (Marteau-Ferey, Bach, et al.,2019). The main ideas from a theoretical

and algorithmic viewpoint that we are going to recall here are developed in Marteau-Ferey,

Ostrovskii, et al. (2019) and Marteau-Ferey, Bach, et al. (2019). The goal of our work is to make

these ideas practical, by e�ciently implementing and deploying the algorithms and making full

use of the available computational architectures. In particular, we will focus on the following

set of generalized self concordantloss functions:

De�nition 3.1 (Generalized self-concordant function (Marteau-Ferey, Ostro-

vskii, et al., 2019)): Let H be a Hilbert space and let z = ( x; y) 2 X � Y be an

input-output pair. We say that `z : H ! R is a generalized self-concordant function on

G � H , when G is a bounded subset ofH and `z is a convex and three times di�erentiable

mapping on H such that for all f; h; k 2 H

r (3) `z(f )[h; k; k] � sup
g2G

jg � hj r 2`z(f )[k; k]: (3.14)
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Denote by R the quantity supg2G kgk < 1 . For many loss functionsG is just the ball in H

centered in zero and with radiusR > 0, then supg2G jg� hj = Rkhk. The following loss functions,

which are widely used in machine learning, are generalized self-concordant

Example 3.1: The following loss functions are generalized self-concordant functions:

1. Logistic regression:`z(f ) = log(1 + exp(� yf (x))), where z = ( x; y) with x 2 X and

y 2 f� 1; 1g.

2. Robust regression:`z(f ) = ' (f (x) � y) with ' (u) = log(eu + e� u). Here z = ( x; y)

with x 2 X and y 2 R

3. Softmax regression:`z(f ) = log(
P k

j =1 [f (x)] j ) � [f (x)]y , where now f : X ! Rk ,

z = ( x; y), with y 2 f 1; : : : ; kg and vj denotes thej -th column of v 2 Rk .

Note, in particular, that the loss functions above are generalized self concordant, but not

self concordantas discussed in Marteau-Ferey, Ostrovskii, et al. (2019).

For the statistical learning problem (see Equations (2.5) and (2.6)) with generalized self-

concordant loss functions, a strong (minmax optimal) theoretical result analogous to the ones

for kernel ridge regression (see Theorem2.4) has been obtained (Marteau-Ferey, Ostrovskii,

et al., 2019). In particular, the regularized empirical risk minimization solution (2.26) with

generalized self-concordant losses instead of the squared loss achieves the bound

E(f̂ � ) � inf
f 2H

E(f ) = O(n� 1=2); (3.15)

under standard regularity conditions on the learning problem and achieves fast learning rates

similar to kernel ridge regression, considering more re�ned regularity conditions that are a

natural extension of the conditions for kernel ridge regression (Marteau-Ferey, Ostrovskii, et al.,

2019).

The paper Marteau-Ferey, Bach, et al. (2019) suggests to solve the regularized empirical risk

minimization problem (2.26) for generalized self-concordant losses, by using a set of techniques

that are extensions of the Falkon algorithm (Rudi, Carratino, et al., 2017). In particular, the

problem is cast in terms of an approximate Newton method, with pseudocode shown in function

GSC-Falkon of Algorithm 3. Nyström method is used a �rst time to reduce the size of the

problem, and then a second time to derive an approximate Newton step (Marteau-Ferey, Bach,

et al., 2019). Indeed a model of the form

f (x) =
mX

i =1

� i k(x; ex i )

is considered and the preconditioner of Equation (3.6) now plays the role of approximate

Hessian, to perform the approximated Newton method.
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Algorithm 3 Pseudocode for approximate Newton method with Falkon, for GSC losses (based
on Marteau-Ferey, Bach, et al. (2019)). LinOp performs the multiplications via matrix-vector
products as in Algorithm 2.

1: function GSC-Falkon (X 2 Rn� d; ŷ 2 Rn ; �; m; t )

2: Set � 0 = 0 2 Rm and � 0 > 0; q > 0 according to Marteau-Ferey, Bach, et al. (2019).

3: X m ; ŷm  RandomSubsample (X; ŷ; m)

4: for k 2 N do

5: � k+1  WeightedFalkon (X; ŷ; X m ; ŷm � k ; t; � k )

6: � k+1  q� k

7: Stop when � k+1 < � and set � last  � k .

8: end for

9: return b�  WeightedFalkon (X; ŷ; X m ; ŷm ; �; t; � last )

10: end function

1: function WeightedFalkon (X 2 Rn� d; ŷ 2 Rn ; X m 2 Rm� d; ŷm 2 Rm ; �; t; � 0 2 Rm )

2: T; A  WeightedPreconditioner (X m ; ym ; � 0; � )

3: function LinOp ( 2 Rm )

4: v  A � 1

5: z  K nm  . predictions on the dataset

6: D  diag [(`00(z1; y1); : : : ; `00(zn ; yn ))]

7: c  K >
nm DK nm T � 1v

8: return A �> T �> c + �n v

9: end function

10: R  A �> T �> K nm ŷ

11:   ConjugateGradient (LinOp ; R; t; � 0) . CG solver starting from � 0

12: return T � 1A � 1

13: end function

1: function WeightedPreconditioner (X m 2 Rm� d; ŷm 2 Rm ; � 2 Rm ; � )

2: K mm  k(X m ; X m ) . Compute the kernel between inducing points

3: z  K mm � . predictions on the Nyström points

4: T  chol(K mm )

5: D  diag [(`00(z1; (ŷm )1); : : : ; `00(zm ; (ŷm )m ))]

6: K mm  1=mT DT > + � I

7: A  chol(K mm )

8: return T; A

9: end function

Given points (ex j ; eyj )m
j =1 selected uniformly at random from the dataset, the approximate

Hessian eH at step k of the Newton method is a weighted version of the Falkon preconditioner
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and has the form
eH =

1
m

T eDkT> + � k I; (3.16)

where T is such that T> T = K mm (e.g. it is the Cholesky decomposition ofK mm , as in

Equation (3.9)) and eDk 2 Rm� m is a diagonal matrix whosej -th element is `00(f k (ex j ); eyj ) where

we assume that the loss function is̀ (f (x); y) and the second derivative is taken with respect

to the �rst variable. f k is the estimator at step k and � k is the regularization parameter at

step k. � k increases at each iteration starting from an initial point � 0, until it reaches the

desired regularization � (see function GSC-Falkon in Algorithm 3). In the same way as in

the Falkon algorithm, the approximate Hessian is never built explicitly, we compute instead its

Cholesky decomposition in terms of matricesT; A as eH � 1 = eB eB > with eB = T � 1A � 1, see the

function WeightedPreconditioner in Algorithm 3. Then conjugate gradient is applied to

the preconditioned problem, to solve the equation

eB > (K nm DkK nm + � I ) eB = eB > K >
nm gk : (3.17)

where Dk 2 Rn� n is a diagonal matrix whosej -th element is `00(f k (x j ); yj ) and gk 2 Rn is

such that (gk ) j = `0(f k (x j ); yj ). To conclude, as proven in Marteau-Ferey, Bach, et al. (2019),

to achieve the same learning rate of(3.15) and good practical performances,GSC-Falkon

(Algorithm 3) needs to callWeightedFalkon only a small number of times with decreasing

regularization parameters � k . Moreover, each timeWeightedFalkon needs to execute only

few iterations t of the CG algorithm. The algorithm presented in Algorithm 3 has an important

theoretical appeal as proved in Marteau-Ferey, Bach, et al. (2019) since it is the fastest to

date to achieve optimal learning rates for generalized self-concordant loss functions. The goal

of our work is to make it also appealing from a practical viewpoint. This requires e�ciently

implementing and deploying Algorithm 3, making full use of the available computational

architectures. Clearly the main bottlenecks here are the same of Falkon for squared loss and

they are introduced and discussed in Section3.3.

3.3 Scalability and GPU Implementation

In this section we discuss Algorithms2 and 3 from the point of view of a practical implementation,

which has to deal with actual memory usage and the details of computer architecture, leaving

behind asymptotic notation. In particular, the advent of the general purpose graphics processing

unit (GPGPU) has had an extremely positive impact on the deployment of many machine

learning algorithms. The bene�ts of using a specialized computer with extreme parallelism � the

GPU � have been reaped mostly by deep learning algorithms, which have adapted well to the

constraints of this di�erent programming paradigm. GPU chips have a peculiar architecture with

rather di�erent properties than the standard von Neumann computer; they are characterized
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by highly parallel computational power, relatively small local accelerator memory and slow

memory transfers to and from the accelerator compared to their computational speed (Wilt,

2013). Nevertheless, the raw computing power in terms of number of �oating point operations

per second (FLOPS) which can be completed, is much higher than that of modern CPUs.

As an example, a modern (as of 2022) consumer-grade GPU can complete35 TeraFLOPS

in single-precision, while a server-grade, much more expensive CPU can complete around

3 TeraFLOPS � a di�erence of more than 10� .

In their standard de�nition, kernel methods require large amounts of memory with a low

density of operations per byte of memory used. This opens the question of how to adapt

methods with low operation density to platforms designed to be extremely e�cient with very

high density of operations per byte. With this in mind, we started considering Falkon, which

is the state of the art kernel solver with minimal computational requirements for optimal

guarantees, with the goal to reformulate its computational structure to dramatically increase

the density of operations per byte, and reduce as much as possible the required memory use /

transfers. To achieve this goal, we use a number of carefully designed computational solutions

which systematically reduce the impact of the inherent bottlenecks of multi-core/multi-GPU

architectures, while leveraging their intrinsic potential. In particular in the rest of this section

we will focus on

(a) minimizing the memory footprint of the solver, which has long been the main bottleneck

for kernel methods, and is the main limitation encountered by current kernel solvers,

(b) dealing with limited memory on the GPU,

(c) reaching the highest possible accelerator utilization, parallelizing memory transfers and

computation,

(d) using the enhanced capabilities of GPUs with reduced-precision �oating point data.

3.3.1 Overcoming RAM memory bottleneck

Kernel solvers that use the Nyström method rely on the matricesK mm and K nm . SinceK nm

is used only in matrix-vector products, we can avoid constructing it explicitly (as we shall see

in the following paragraphs) which leaves us to deal with theK mm matrix. When the number

of centersm is large, it is crucial to carefully manage the memory needed for this task: in our

implementation we only ever allocate a singlem � m matrix, and overwrite it in di�erent steps

to calculate the preconditioner. Indeed, with the Falkon preconditioner of Equation (3.6), the

matrix K mm itself is not needed in the conjugate gradient iteration.

Figure 3.1 shows the total memory usage, which consists of the preconditioner occupying

approximately 90% of the memory (see last paragraph of Section3.3.1), the weight vector e� �;t
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Figure 3.1 Bu�ers allocated in RAM by the Falkon algorithm: a m � m matrix for both K mm

and the preconditioner, the parameter vector, a batch of the input dataset and the Nyström
centers.

and two bu�ers holding (part of) the m inducing points and a small subset of the datasetX ,

needed to compute a block ofK nm .

In-place computation and storage of the preconditioner. We recall the preconditioner

decomposition of Equation (3.9), keeping in mind that chol(A) = L implies L > L = A with

L lower triangular. eB can be decomposed into two triangular matrices obtained via upper

Cholesky decompositions (i.e. T T> = K mm , T upper-triangular),

eB =
1

p
n

T � 1A � 1; T = chol( K mm ); A = chol
�

1
m

T T> + � I
�

: (3.18)

All operations are performed in-place allocating a singlem � m matrix as shown in Figure 3.2

and as described next:

1. A matrix of dimension m � m is allocated in memory;

2. The K mm kernel is computed in blocks on the GPU and copied to the matrix;

3. Cholesky decomposition of the upper triangle ofK mm is performed on the GPU (if the

kernel does not �t GPU memory an out-of-core algorithm is used, see later sections).

This operation must be run in place: the input and output must reside in the same block

of memory.

4. The product T T> is computed in blocks via GPU and stored in the lower part. This

operation can run out of place (that is, the output does not overwrite the input).

5. Out-of-core, in-place Cholesky decomposition is performed on the lower triangle to get

A> .

Additional care is needed to take into account the matrix diagonal, not described here for

brevity.
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Figure 3.2 In-memory preconditioner computation

Elimination of the storage of K mm . Now consider more carefully the left hand side of

the linear system solved by Falkon (see also Equation (3.8)):

eB > (K >
nm K nm + �n K mm ) eB; with  = eB � 1 e� � :

By de�nition of the preconditioner and of the Cholesky decomposition, (T � 1)> K mm T � 1 =

(T � 1)> T> T T � 1 = I . Then

eB > (K >
nm K nm + �n K mm ) eB = ( A � 1)> (T � 1)> (K >

nm K nm + �n K mm )T � 1A � 1 (3.19)

= ( A � 1)> [(T � 1)> K >
nm K nm T � 1 + �n I ]A � 1: (3.20)

This characterization shows that K mm is not needed during CG optimization, and the storage

space used for holding it can be repurposed for preconditioner computation with no adverse

e�ects.

Blockwise K nm -vector product on GPU. The conjugate gradient algorithm will repeat-

edly execute Equation (3.20) for di�erent candidate vectors  . The most expensive operations are

the matrix-vector products K >
nm (K nm v) for an arbitrary vector v 2 Rm� 1 which � if computed

explicitly � would require n � m memory. A more e�cient way of proceeding is to to split the

input data X 2 Rn� d in B batches ofb rows eachf X b;: 2 Rb� dgB
b=1 , so that matrix-vector prod-

ucts can be accumulated between batches using the formula
P B

b=1 k(X b;:; X m )> (k(X b;:; X m )v).

The matrix blocks to be held in memory are summarized in Figure3.1 for a total size of

m � (m + d + 1) + b � d where b can be small under memory pressure, or large for greater

performance. It is important to note that k(X b;:; X m ) is never stored in main memory, as all

operations on it are done on the GPU. This reduces the required memory bandwidth between

CPU and GPU dramatically.

3.3.2 Fitting in GPU memory and dealing with multiple GPUs

While the main RAM might be a bottleneck for the full kernel matrix, GPUs have an even

smaller amount of memory, and another level of splitting is needed to exploit their speed.
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For example, a typical server may have 256GB of RAM and 4 GPUs with 16GB ram each; a

preconditioner with m = 2 � 105 occupies150 GB and K nm with n = 107 would need2000 GB

of memory if stored.

Therefore we need to deal with both e�ciently computing of K nm -vector product in chunks

that can �t a GPU, and computing the preconditioner which may not �t in GPU memory.

Out-of-core (OOC) algorithms are developed speci�cally for computer architectures where a

large storage layer (e.g. main RAM) is coupled to a layer which can perform computations

but has little memory ( e.g. the GPU). Often a side goal is to minimize the amount of data

transfer between the two layers. Unfortunately, common machine learning libraries such as

Tensor�ow (Abadi et al., 2015) or PyTorch (Paszke et al., 2019) do not implement OOC versions

of the required matrix operations, leaving potentially complex implementations to the users.

Hence, in our library, we provide these implementations in easily reusable form. It is important

to note that splitting our workload to �t in GPU also provides an easy path to parallelization in

a multi-GPU system: new chunks of computation are assigned to the �rst free GPU, e�ectively

redistributing the workload between multiple accelerators when available.

Optimized block decomposition for out-of-core K nm -vector multiplication. As seen

in the previous section, matrix-vector products can be split along the dimensionn, resulting in

independent chunks of work that need to be summed up at the end. The algorithm to compute

the product between a kernel matrix and a vector in an out of core way proceeds as follows:

1. transferring a block of data onto the device,

2. computing the kernel on device and multiplying it by the vector,

3. copying the result back to the host.

This sequence of operations minimizes expensive data-transfers between host and device since

the kernel matrix is never moved. In particular, the computation is also split along dimensions

m and d, to maximize the ratio between computational complexity and transfer time: i.e.

maximizing qrs
qs+ ds subject to qs+ ds � G, where q, r and s are the batch dimensions alongn,

m and d respectively, andG is the available GPU memory.

Out-of-core multi-GPU Cholesky decomposition. Other operations, such as Cholesky

decomposition and triangular matrix multiplication (lines 15, 16, 17 of Algorithm 2), can

also bene�t from GPU execution. Here we describe, at a high level, our algorithm for multi-

GPU OOC Cholesky decomposition inspired by Ltaief et al. (2011) and R. Wu ( 2018). We

leave further details to Chapter B. Consider a symmetric matrix A, split into B � B tiles

A ij 2 Rb� b; i 2 [B ]; j 2 [B ], assumed of equal size for brevity. We want a factorizationA = LL > ,
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Figure 3.3 Three phases of the block Cholesky decomposition for updating the �rst column.
Arrows indicate inter-GPU memory transfers between accelerators G-1 and G-2.
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The algorithm runs in-place, updating one column ofA at a time. Each column update proceeds

in three steps, illustrated in Figure 3.3. Clearly A1;1 = L 1;1L >
1;1 so we computeL 1;1 by a

Cholesky decomposition on tileA1;1 which is small and can be done entirely on the GPU (e.g.

with cuSOLVER (NVIDIA Corporation, 2020b)). Then we consider the other tiles of the �rst

block column of L for which A j; 1 = L j; 1L >
1;1 with j > 1. Since we knowL 1;1 from the �rst

step, we obtain L j; 1 = A j; 1L �>
1;1 for all j > 1 by solving a triangular system (on the GPU).

Finally the �rst block column of L is used to update the trailing submatrix of A. Note that

A i;j =
P j

k=1 L i;k L >
j;k = L i; 1L >

j; 1 +
P j

k=2 L i;k L >
j;k for 2 � j � i , so we can update the trailing

submatrix as A i;j = A i;j � L i; 1L >
j; 1. We implemented a parallel version of the above algorithm

which distributes block-rows between the available processors in a 1D block-cyclic way (e.g.

Figure 3.3 (left): rows 1 and 3 are assigned to GPU-1, rows 2 and 4 are assigned to GPU-2).

For each column update, one processor executes the �rst step and transfers the result to the

others (the arrows in Figure 3.3), which can then execute step 2 in parallel. To update the

trailing matrix, further data transfer between devices may be necessary. The tile-size is chosen

as a function of GPU memory: each device needs to hold one block column plus a single block

at any given time.

The preconditioner contains two Cholesky decompositions, which can be handled as described

above, and one triangular matrix multiplication (this is also known as the lauum operation

in LAPACK (Anderson et al., 1999)). We handle the latter computations similarly to the

Cholesky decomposition, as described in ChapterB.

Figure 3.4 shows the results from running the two types of operation we are considering with

one and two GPUs. At low matrix sizes the speedup with two GPUs is negligible, especially
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(a) Parallel LAUUM.
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(b) Parallel Cholesky decomposition.

Figure 3.4 Running time of preconditioner operations with one and two GPUs. The relative
speed-up with 2 GPUs is shown in the black dashed line. Thelauum operation (triangular
matrix multiplication) was run out-of-place, which typically leads to better parallelism, while
the Cholesky decomposition was run in-place.

for the Cholesky decomposition. In such cases it is best to use a single GPU (especially

since for n � 40000 the whole matrix �ts in GPU memory, so an in-core algorithm can be

used). With higher matrix sizes, having more than one GPU starts bringing real bene�ts,

with a peak speedup around 1:8� for preconditioners of size140 000. The factors blocking

such speedup from reaching a perfect 2� are di�erent for the two operations. The Cholesky

decomposition has many data dependencies, as can be seen by the communication arrows

in Figure 3.3. This limits the amount of work which can be parallelized to certain speci�c

parts of the algorithm. Synchronization between threads and processors is necessary at the

boundaries of the parallelizable work-items to ensure algorithm correctness, which slows the

algorithm down further. Because the lauum operation runs out-of-place (which means that

input and output reside at two di�erent memory locations, see Chapter B for more details), it

does not need any synchronization, since the original data remains available to all processors.

The main bottleneck is an operation of the algorithm which must run on the CPU, since an

equivalent GPU implementation does not exist in popular linear algebra packages (for the

interested readers this is the operation at Line7 of Algorithm 4 in Chapter B). We left porting

this operation to the GPU as future work, but it has the potential to speed up the out-of-core

lauum algorithm considerably.

3.3.3 Optimizing data transfers and other improvements

The speed of computations on GPUs is such that data transfers to and from the devices

become signi�cant bottlenecks. We have described earlier how, for matrix-vector products,

the computed blocks of K nm never leave the device. Further, optimization is possible by

parallelizing computations and data transfers. Indeed, modern GPUs have an independent and
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Figure 3.5 Overlapping memory transfers and computation.

parallel control on the following activities: loading from RAM, saving to RAM, performing

computations. By controlling the dimensions of the chunk, we control the cost of loading and

saving operations, so that they never exceed the computational time. By running three parallel

threads for the same GPU and assuming equal duration of each piece of work, we can runt

GPU computations in t + 2 time units instead of 3t time units for a serial implementation

(see Figure3.5, where t = 3). This guarantees near optimal usage of the GPU and in practice

corresponds to a considerable speed up of matrix-vector products.

Leveraging the trade-o� numerical precision / computational power. GPUs are

designed to achieve peak performance with low precision �oating point numbers, to such a great

degree that going from 64 to 32-bit �oats can correspond (depending on the exact architecture)

to � 10� throughput improvement. However, changing precision can lead to unexpected

problems. For example, computing the Gaussian kernel is commonly done by expanding the

norm kx � x0k2 = x> x � 2x> x0+ x0>x0, but in high dimensions kxk and kx0k and the cross-term

can have very high absolute values, so their sum will retain fewer signi�cant digits. Loss of

precision may also lead to some of the small eigenvalues of the computed kernel matrix to

become negative (by the e�ect of noise introduced by inexact computations), in turn causing

the Cholesky decomposition to fail. To avoid this, we computeK mm in blocks, converting each

block to 64-bit precision for the sum, and then back to 32-bits.

Dealing with thin submatrices. As a result of our block division strategies, it may happen

that blocks become thin (i.e. one dimension is small). In this case, matrix operations,e.g.

using cuBLAS (NVIDIA Corporation, 2020a), cannot leverage the full computational power.

In turn this can reduce performance, breaking the inherent computational symmetry among

GPUs which is crucial for the e�ectiveness of a parallel system like the one proposed in this

paper. To guarantee good performance for this case, instead of using standard GPU operations,

we perform matrix-vector products using KeOps (Charlier, Feydy, Glaunès, and Durif,2020;

Charlier, Feydy, Glaunès, Collin, et al., 2021): a specialized library to compute kernel matrices

very e�ciently when one dimension is small, see Table3.1.

Dealing with sparse datasets. On the other side of the spectrum, sparse datasets with

high dimensionality are common in some areas of machine learning. While the kernel computed
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Figure 3.6 Benchmarking kernel solvers on large scale datasets with millions and billions points.
Our approach (red and yellow lines) consistently achieves state of the art accuracy in minutes.

on such datasets will be dense, and thus can be handled normally, it is ine�cient and in some

cases impossible (e.g. with d � 106 as is the case for the YELP dataset we used) to convert

the inputs to a dense representation. We therefore wrapped specialized sparse linear algebra

routines to perform sparse matrix multiplication (NVIDIA Corporation, 2020c), and adapted

other operations such as the row-wise norm to sparse matrices. Thus our library handles sparse

matrices with no special con�guration, both on the GPU and � if a GPU is not available � on

the CPU.

3.4 Experiments

We ran a series of tests to evaluate the relative importance of the computational solutions we

introduced, and performed extensive comparisons on real-world datasets. Figure3.6 shows

that our implementation of the Falkon algorithm (denoted as Falkon for squared loss and

LogFalkon for logistic loss) converges much faster than competing implementations of kernel-

based algorithms, while maintaining the same or better accuracy. We start o� this section with

an ablation study of the various performance-enhancing features we introduced in Section3.3,

followed by a description of the algorithms used for benchmarking. We then present the

benchmark results on large scale datasets (up to one billion points), and a brief survey of

results in the literature to back up our experiments. Towards the end of this section, additional

experiments are presented to show that the proposed method is state of the art on small

datasets as well, and to show how it scales to multiple devices. For a description of the datasets

used, and links from where they can be retrieved, please see ChapterA.
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Table 3.1 Relative performance improvement of the implemented optimizations w.r.t. Rudi,
Carratino, et al. ( 2017). The experiment was run with the HIGGS dataset, 1� 105 centers and
10 conjugate gradient iterations.

Experiment Preconditioner Iterations

Time Improvement Time Improvement

Falkon from Rudi, Carratino, et al. ( 2017) 2337 s � 4565 s �

Float32 precision 1306 s 1:8� 1496 s 3�

GPU preconditioner 179 s 7:3� 1344 s 1:1�

2 GPUs 118 s 1:5� 693 s 1:9�

KeOps 119 s 1� 232 s 3�

Overall improvement 19:7� 18:8�

3.4.1 Relative impact of performance optimizations

We �rst evaluate the relative importance of the computational solutions introduced in our

work. We ran Falkon on the HIGGS dataset several times with the same hyperparameters

(m = 1� 105 and 10 CG iterations), but with di�erent features enabled. Each feature roughly

corresponds to one of the performance optimizations discussed in Section3.3. The outcome

of these experiments is given in Table3.1. The baseline model is very similar to the original

Falkon implementation (Rudi, Carratino, et al., 2017), where the preconditioner ran on the

CPU, �oat64 (or double) precision was being used, but matrix-vector multiplications for the CG

algorithm were GPU accelerated. As a �rst optimization we used �oat32 (or single) precision

for all computations, with care taken to avoid accumulation of error when computing the

K mm matrix as discussed in Section3.3. This immediately resulted in a 2� speedup for the

preconditioner (which now runs on the CPU), and 3� for the CG iterations. Switching to

a GPU preconditioner (using the out-of-core algorithms previously described) gave a huge

boost to the preconditioner running time which went from more than 20 min to just under

3 min. Adding a second GPU produced a perfect 2� speedup for the CG iterations, and a

more modest 1:5� speedup for the preconditioner which (a) involves operations which are not

perfectly parallelizable and (b) incurs in some �xed startup costs. Finally, since the HIGGS

dataset has only 9 features (thus the data matrix is thin), we can use KeOps (Charlier, Feydy,

Glaunès, Collin, et al., 2021) with great bene�ts to the speed of matrix-vector multiplications.

Overall our implementation boasts a nearly 20� improvement over the baseline, which makes

learning on several huge datasets doable in a matter of minutes.
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3.4.2 Algorithms & Experimental Settings

Algorithms under test

We compare against the following software packages: EigenPro (Ma et al.,2019), GP�ow (A.

Matthews et al., 2017) and GPyTorch (Gardner, Pleiss, Bindel, et al., 2018).

The �rst library implements a KRR solver based on preconditioned block-coordinate gradient

descent where the preconditioner is based on a truncated eigendecomposition of a data subsample.

EigenPro provides a fully in-core implementation and therefore does not scale to the largest

datasets we tried. On some datasets EigenPro required the training data to be subsampled to

avoid GPU memory issues. The only hyperparameters in the software package � other than the

kernel parameters � are the ones governing the preconditioner's size. On some experiments we

found it necessary to manually tune the learning rate (we divided the automatically inferred

learning rate by a �xed integer, denoted by � � in Table 3.2).

The other two packages implement several GP approximations and exact solvers, and we

had to choose the model which would give a more appropriate comparison: we decided to avoid

deep GPs (Damianou et al.,2013; Wilson, Hu, et al., 2016; Cutajar, Bonilla, et al., 2017) since

they share more similarities to deep nets than to kernel methods; on the other hand the exact

GP � even when implemented on GPU (Gardner, Pleiss, Bindel, et al.,2018; K. Wang et al.,

2019) � as well as structured kernel interpolation (Wilson and Nickisch, 2015; Gardner, Pleiss,

R. Wu, et al., 2018) approximations do not scale to the size of datasets we are interested in.

The only GP models which would scale up to tens of millions of points are stochastic variational

GPs (SVGP). The SVGP is trained in minibatches by maximizing the ELBO objective with

respect to the variational parameters and the model hyperparameters. Stochastic training

e�ectively constrains GPU memory usage with the minibatch size. Hyperparameters include

kernel parameters (such as the length-scale of the RBF kernel) as well as the inducing points

which � unlike in Falkon � are modi�ed throughout training using gradient descent. For this

reason SVGP works well even with very few inducing points, and all operations can run in-core.

While GP solvers are capable of estimating the full predictive covariance, we ensured that

the software did not compute it, and further we did not consider prediction times in our

benchmarks. Furthermore we always considered the Gaussian kernel with a single length-scale,

due to the high e�ort of tuning multiple length-scales for Falkon, although for GPs tuning would

have been automatic. Both GPyTorch and GP�ow implement the same SVGP model, but we

found the best settings on the two libraries to be di�erent; the discrepancies in running time and

accuracy between the two GP libraries come from implementation and tuning di�erences. We

ran all algorithms under as similar conditions as possible: same hardware, consistent software

versions, equal �oating-point precision and equal kernels (we always considered the Gaussian

kernel with a single length-scale). Hyperparameters were optimized manually by training on

a small data subset, to provide a sensible trade o� between performance and accuracy: we
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increased thecomplexity of the di�erent algorithms until they reached high GPU utilization

since this is often the knee in the time-accuracy curve.

For GP�ow (v2.1.3) we used the SVGP model with Gaussian likelihood for regression,

Bernoulli for binary classi�cation and Softmax for multi-class problems. We used Adam for

optimization and tuned the learning rate, the number of inducing points, and the constraints

on the variational distribution covariance ( i.e. diagonal or full covariance matrix). We found

that using a full covariance matrix was rarely bene�cial and increased training times slightly, so

all �nal experiments used a diagonal covariance matrix. The number of parameters optimized

by gradient descent ism � d + m � 2 + 3, which includes the inducing points, the variational

parameters, two parameters for the Gaussian kernel (length-scale and variance) and the variance

of the likelihood. For multi-class problems separate variational parameters were trained for

each class. Since we wished to use single-precision �oating point numbers in order to make

GPU training more e�cient, we found that natural gradient optimization was unstable. It

remains to be seen whether the tradeo� between double-precision data and natural gradient

optimization could further improve results. We further tested the bene�ts of using whitening of

the inducing points, and found that it decreased per-epoch running times by about 2Ö, while at

the same time slowing down convergence by around the same amount. In practice this meant

that the di�erence in global running time was not strongly a�ected by whitening, and we ended

up using it only for the HIGGS dataset.

For GPyTorch (v.1.2.0) we used the SVGP model with Gaussian and Bernoulli likelihoods.

We were unable to run GPyTorch's SVGP model on the TIMIT dataset due to problems in

dealing with multiple outputs. We used the natural gradient optimizer to learn the variational

parameters, and Adam to learn the other hyperparameters. The learning rate of the two

optimizers was kept equal and tuned for best performance. We further optimized the number

of inducing points, and variational distribution constraints. In practice we found it necessary to

use the natural gradient variational distribution for regression problem, and the lower-triangular

parameterization for classi�cation problems (which are non-conjugate). We found that using

unwhitened inducing points was around 3� faster than performing whitening, and did not

hamper convergence. While GPyTorch is theoretically able to run on multi-GPU systems, we

noticed that this feature was not available for the SVGP model thus we always used a single

GPU; furthermore, while a KeOps integration into GPyTorch is available, we found that for the

SVGP model it would increase the running time, so we did not use it. The trained parameters

were the same as for GP�ow plus an extra scalar for the GP mean.

For Falkon we tuned the kernel length-scale, number of inducing points and regularization

amount (� ). We used a coarse to �ne approach to tune the length-scale which provided good

results with a limited number of validation runs.

For Logistic Falkon, in addition to the previously mentioned hyperparameters, the regular-

ization path had to be tuned. We found the algorithm not to be very sensitive to the exact
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regularization path: it is su�cient to set the �nal � , and many di�erent paths which lead to

such value will return the same results.

Experimental setting

All experiments were run on a Dell PowerEdge server with 2 Intel Xeon 4116 CPUs, 2 Titan

Xp GPUs and 256GB of RAM. Since out of the analyzed implementations only Falkon could

use both GPUs e�ectively, we ran it both in a 2-GPU con�guration (see Table 3.3) and in

a single-GPU con�guration (see in appendix TableB.1) where Falkon was on average 1:6�

slower. Each experiment was run 5 times, varying the random train/test data split and the

inducing points. Out of all possible experiments, we failed to run GPyTorch on TIMIT due

to di�culties in setting up a multi-class benchmark (this is not a limitation of the software).

Other experiments, such as EigenPro on several larger datasets, failed due to memory errors

and others yet due to software limitations in handling sparse inputs (none of the examined

implementations could run the sparse YELP dataset). Finally, LogFalkon only makes sense

on binary classi�cation datasets. Table 3.2 summarizes the most important hyperparameter

settings for each algorithm-dataset pair.

3.4.3 Scalability to large-scale datasets

For the second series of experiments we compared our implementation against the three software

packages for GPU-accelerated kernel methods presented above, on several large scale datasets.

All experiments were run on the same hardware, with comparable amounts of hyperparameter

tuning. Accuracy and timings are shown in Table 3.3. In all cases, our library converges

in less time than the other implementations: with an average speedup ranging from 6�

when compared to EigenPro to > 10� when compared to GPyTorch. Only on very few

datasets such as AIRLINE-CLS, GP�ow gets closer to Falkon's running time. Both models had

worse accuracy than Falkon. EigenPro has generally high accuracy but can not handle large

datasets at all. Finally, LogFalkon provides a small but consistent accuracy boost on binary

classi�cation problems, at the expense of higher running time. Compared with the original

Falkon library (Rudi, Carratino, et al., 2017) we report slightly higher error on HIGGS; this

is attributable to the use of low-precision �oating point numbers. We did not �nd signi�cant

performance di�erences for other datasets.

3.4.4 Extended comparisons

We also compared the results of our library against a comprehensive list of competing kernel

methods, by scanning the literature for results which used similar datasets as the ones we

considered and reported both accuracy and running times. This allowed us to con�rm that the

results reported in our benchmarks for competing methods (see Table3.3) were in-line with
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Table 3.2 Summary of the most important hyperparameter settings. � denotes the learning rate,
subsamplethe amount of training-set subsampling that was performed (i.e. training on a smaller
dataset), and by Newton steps the number of separate runs of the main Falkon algorithm for
Logistic Falkon (see Section3.2.4). � denotes a di�erent parameterization of the Gaussian
kernel's length-scale, which follows� = 1

 in Equation ( 2.24).

AIRLINE AIRLINE-CLS MSD SUSY TIMIT YELP HIGGS TAXI

n 5:93� 106 5:93� 106 5:1� 105 5� 106 1:2� 106 1:6� 106 11� 107 1:15� 109

d 8 8 90 18 440 6:5� 107 28 9
labels reg 2-cls reg 2-cls 144-cls reg 2-cls reg

Falkon m 1� 105 1� 105 5� 104 3� 104 1� 105 5� 104 1:2� 105 1� 105

� 0:9 0:9 7 3 14:5 20 3:8 1
� 1� 10� 8 1� 10� 8 2� 10� 6 1� 10� 6 5� 10� 9 1� 10� 6 3� 10� 8 2� 10� 7

epochs 20 10 10 5 5 10 10 7
LogFalkon m � 1 � 105 � 2 � 104 � � 1 � 105 �

� � 0 :9 � 3 � � 5 �
� � 1 � 10� 9 � 1 � 10� 8 � � 1 � 10� 9 �
Newt. steps � 9 � 6 � � 9 �

GPyTorch m 2000 2000 3000 2000 � � 2000 1000
� 5� 10� 3 2� 10� 3 2� 10� 3 1� 10� 3 � � 2 � 10� 2 2� 10� 3

epochs 20 20 20 20 � � 15 5
GP�ow m 2000 2000 3000 2000 2000 � 2000 1000

� 5� 10� 3 5� 10� 3 2� 10� 3 3� 10� 3 1� 10� 2 � 2 � 10� 2 3� 10� 3

epochs 25 20 45 10 15 � 60 10
whiten no no no no no � yes no

EigenPro � � 10 12 20 1 1 � � �
subsample 1� 106 1� 106 � 6 � 105 � � � �
epochs 9 10 9 1 4 � � �

what had been previously reported. The outcome of this comparison is shown in Table3.4. We

do not report results where running time is not mentioned. Some of the numbers in Table3.4

have higher accuracy than Falkon: this comes from the use of deep GPs which � through a vast

number of parameters � can learn better data representations. Such models are intrinsically

di�erent in spirit from kernel methods, and we do not aim to compare with them speci�cally;

they are reported in Table 3.4 for the sake of completeness. We wish to highlight the results on

the TAXI dataset, where a distributed GP (H. Peng et al., 2017) ran in 6000 son a system

with 28 000CPUs, while Falkon achieved similar accuracy in less time, with a much smaller

computational budget.

3.4.5 Small-scale benchmarks

In Table 3.5 we compare the running times of Falkon and ThunderSVM (Wen et al.,2018) on

three popular image datasets. ThunderSVM was chosen among several SVM implementations

as it runs entirely on the GPU, and can thus solve the hinge-loss problem quickly for problems

of moderate size. Smaller datasets than the ones used for previous experiments were considered,

since ThunderSVM solves the full SVM problem and thus su�ers from cubic time scaling.

The results obtained show that Falkon can work e�ciently even on smaller datasets, resulting

between 2 and 10 times faster than ThunderSVM (depending on problem size), with comparable
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Table 3.3 Accuracy and running-time comparisons on large scale datasets.

TAXI n � 109 HIGGS n � 107 YELP n � 106; d � 107

RMSE time 1 � AUC time rel. RMSE time

Falkon 311:7� 0:1 3628� 2 s 0:1804� 0:0003 443� 2 s 0:810� 0:001 1008 � 2 s
LogFalkon � 0:1787� 0:0002 2267� 5 s �
EigenPro FAIL FAIL FAIL
GPyTorch 315:0� 0:2 37 009� 42 s 0:1997� 0:0004 2451� 13 s FAIL
GP�ow 313:2� 0:1 30 536� 63 s 0:1884� 0:0003 1174� 2 s FAIL

TIMIT n � 106 AIRLINE n � 106 MSD n � 105

c-error time rel. MSE time rel. error time

Falkon 32:27� 0:08 % 288� 3 s 0:758� 0:005 245� 5 s (4:4834� 0:0008)� 10� 3 62� 1 s
EigenPro 31:91� 0:01 % 1737� 8 s 0:785� 0:005 1471� 11 s1 (4 :4778� 0:0004) � 10� 3 378� 8 s
GPyTorch � 0 :793� 0:005 2069� 50 s (4:5004� 0:0010)� 10� 3 502� 2 s
GP�ow 33 :78� 0:14 % 2672� 10 s 0:782� 0:005 1297� 2 s (4:4986� 0:0005)� 10� 3 525� 5 s

AIRLINE-CLS n � 106 SUSY n � 106

c-error time c-error time

Falkon 31:5� 0:2 % 186� 1 s 19:67� 0:02 % 22� 0 s
LogFalkon 31:3� 0:2 % 1291� 3 s 19:58� 0:03 % 83� 1 s
EigenPro 32:5� 0:2 % 1629� 1 s1 20:08� 0:55 % 90� 0 s2

GPyTorch 32:5� 0:2 % 1436� 2 s 19:69� 0:03 % 882� 9 s
GP�ow 32 :3� 0:2 % 1039� 1 s 19:65� 0:03 % 560� 11 s
1Using a random subset of 1� 106 points for training. 2Using a random subset of 6� 105 points for training.

accuracy. To further shave o� some time, we implemented a version of Falkon which runs

entirely inside the GPU: we call this InCoreFalkon , and it can only be used on smaller datasets

which �t inside the GPU, leaving some space to spare which is used for the preconditioner

and other computations. Table 3.5 shows that InCoreFalkon gives a further speed-up of � on

average � 2� compared to the standard implementation.

3.4.6 Multi-GPU scalability

In this section we look into the scalability of our implementation across multiple GPUs.

Scalability results for the full Falkon algorithm on the TAXI dataset are shown in Figure 3.7.

This result depends on scaling both the preconditioner and the conjugate gradient iterations.

Multi-device scaling of the preconditioner has already been discussed in Section3.3 (see

Figure 3.4): data dependencies and other ine�ciencies prevent a linear scaling with more

devices.

Every CG iteration consists of two multiplications between the kernel matrix and an

arbitrary vector. Hence, to better isolate performance of this part of the algorithm we will

analyze di�erent routines for kernel vector multiplication k(X (1) ; X (2) )v. In particular, given

the impressive results achieved by KeOps (see Table3.1) we wished to compare the pure

Python implementation (which leverages PyTorch for GPU computations) with the native

CUDA implementation from KeOps (Charlier, Feydy, Glaunès, Collin, et al., 2021). Let the

problem dimensions be as followsX (1) 2 Rn� d; X (2) 2 Rm� d; v 2 Rm� 1 and k(�; �) be a kernel
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Table 3.4 Survey of accuracy and run-time results on the considered datasets as reported in the
literature. We report the result of our implementation (Falkon) next to other implementations,
along with the time taken and the hardware used (where available).

Dataset Falkon Other methods

error time error time reference

TAXI
(metric: RMSE)

311:7� 0:1 3628� 2 s 309:7 6000 s
28 000 vCPUs
(AWS)

ADVGP (H. Peng et al.,
2017)

HIGGS
(metric: c-err)

25:78� 0:03 % 443� 2 s 32:87 % 1392 s
on 14 node cluster

liquidSVM (Steinwart
and Thomann, 2017)

YELP
(metric: RMSE)

0:810� 0:001 1008� 2 s 0:861 � 3500 s Nyström (Tu et al., 2016)

0:854 � 30 000 s
on 128 machines
(AWS)

Full linear kernel (Tu et
al., 2016)

AIRLINE
(metric: MSE)

0:758� 0:005 245� 5 s 0:827� 0:004 265� 6 s
on a laptop

VFF-GP (Hensman, Dur-
rande, et al., 2017)

0:791� 0:005 18 360� 360 s
on a cluster

SVIGP (Hensman, Dur-
rande, et al., 2017)

MSD
(metric: rel. err.)

4:48� 10� 3 62� 1 s � 4:55� 10� 3 210 s
on IBM POWER8

Hierarchical (J. Chen et
al., 2017)

4:58� 10� 3 289 s
on 8 r3.8xlarge
(AWS)

Faster KRR (Avron et al.,
2017)

AIRLINE-CLS
(metric: AUC)

0:739� 0:002 186� 1 s 0:781� 0:001 14 328 s Varitional Deep GP (Wil-
son, Hu, et al., 2016)

0:694 5200 s TT-GP (Izmailov et al.,
2018)

0:788 1375 s Deep TT-GP (Izmailov et
al., 2018)

0:665 80 000 s cVGP(Hensman, A. G.
Matthews, et al., 2015)

0:785 � 5000 s RF Deep GPs (Cutajar,
Bonilla, et al., 2017)

SUSY
(metric: c-err)

19:67� 0:02 % 22� 0 s � 20% � 2000 s
on IBM POWER8

Hierarchical (J. Chen et
al., 2017)

19:8% 58 s
on 1 Titan Xp

EigenPro 2.0 (Ma et al.,
2019)
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Table 3.5 Comparing the running times of Falkon, the in-core version of Falkon and ThunderSVM
on three image datasets. Hyperparameters (especially the number of inducing pointsm) were
tuned so that the two algorithms obtained approximately the same accuracy.

MNIST
n = 6 � 104; d = 780

CIFAR10
n = 6 �104; d = 1024

SVHN
n = 7 �104; d = 1024

Falkon 10:9 s 13:7 s 17:2 s

InCoreFalkon 6:5 s 7:9 s 6:7 s

ThunderSVM 19:6 s 82:9 s 166:4 s

Figure 3.7 Multi-GPU scalability of Falkon on the TAXI dataset (settings are the same as per
Table 3.2). Falkon scales remarkably well, with even 4 GPUs.

function. In Figure 3.8 we observed two di�erent scaling outcomes: increasing the number

of data points n results in linear scaling across both implementations, with KeOps being

approximately 10� faster than our implementation (see Figure3.8(a)). Increasing the data

dimension d the PyTorch implementation scales linearly, but KeOps scales polynomially. From

Figure 3.8(b) it is clear that KeOps cannot be used with high-dimensional data. In our �nal

algorithm we set a threshold on the data dimensionality and switch implementation based on

this. Finally note that this operation scales almost perfectly with multiple GPUs.

3.5 Conclusions

Making �exible and easy to use machine learning libraries available is one of the keys of

the recent success of machine learning. Here, we contribute to this e�ort by developing a

library for large scale kernel methods. We translate algorithmic ideas into practical solutions,

using a number of carefully designed computational approaches speci�cally adapted to GPU
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Figure 3.8 Scaling of matrix-vector implementations where the matrix is the Gaussian kernel.
In (a) we have setm = 20 000, d = 10 and n is variable; in (b) we set m = n = 20 000and we
vary d. All experiments are run on 1 and 2 GPUs on single precision random data.

architectures. The resulting library achieves excellent performance both in terms of accuracy

and computational cost. A number of further developments are possible building on our work.

For example, considering other loss functions or optimization approaches, and especially more

structured kernels (J. Chen et al., 2017) that could further improve e�ciency.



Chapter 4

Hyperparameter Optimization in

KRR

Learning from �nite data requires �tting models of varying complexity to the available training

set. Too complex a model will over�t and fail to generalize to unseen examples, while an

exceedingly simple one will not learn the complex relations present in the data. The problem

of �nding the model with the right complexity is referred to as model selection in statistics and

more broadly as hyperparameter tuning in machine learning. It is a classical problem, known

to be of utmost importance for machine learning algorithms to perform well in practice. As

such, much has been written about it (Hastie et al.,2009), including a number of theoretical

results (Tsybakov, 2003; Arlot, 2007; Massart, 2007). Hyperparameter (HP) tuning is also at

the core of recent trends such as neural architecture search (Elsken et al.,2019) or AutoML

(Hutter et al., 2019). In this paper, we consider the question of hyperparameter tuning in the

context of kernel methods and speci�cally kernel ridge regression (KRR) (Smola et al.,2000).

We have shown in Chapter3 that KRR can be scaled to massive data-sets using approximate

solvers, which take advantage of a number of ideas from optimization (Boyd et al.,2004) and

randomized algorithms (El Alaoui et al., 2015), and exploit parallel computations with GPUs.

While this solution opens up new possibilities for applying kernel methods, hyperparameter

tuning is notably missing, ultimately hindering its practical use and e�ciency. Indeed, available

solutions which provide hyperparameter tuning are either limited to small data, or are restricted

to very few hyperparameters (Steinwart and Thomann,2017; Pedregosa et al.,2011; Suykens

et al., 2002).

In this chapter we work to �ll in this gap, considering approximate solvers based on the

Nyström approximation and working towards the automated tuning of regularization and

kernel parameters, as well as of the Nyström centers. On the one hand, we review and

compare empirically a number of hyperparameter tuning strategies, while discussing their basic

theoretical guarantees. On the other hand we propose, and provide an e�cient implementation
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for, a novel criterion inspired by complexity regularization (Bartlett, Boucheron, et al., 2002)

and based on a data-dependent bound. This bound treats separately the sources of variance

due to the stochastic nature of the data and to the Nyström approximation. In practice, this

results in better stability properties of the corresponding tuning strategy. As a byproduct of our

analysis we complement an existing library for large-scale kernel methods with the possibility to

adaptively tune a large number of hyperparameters. Code is available at the following address:

https://github.com/falkonml/falkon .

In Section 4.1 the basics of hyperparameter tuning are introduced. In Section4.2 we propose

our new criterion, and discuss its e�cient implementation in Section 4.3. In Section 4.4 we

conduct a thorough experimental study and �nally, in Section 4.5 the full derivation of the

derived criterion is provided and �nally, in Section 4.6 we provide some concluding remarks.

4.1 Background on hyperparameter optimization

We begin by brie�y introducing the problem of learning a model's parameters, which naturally

leads to learning the hyperparameters, and then discuss various objective functions and

optimization algorithms which have been proposed for the task.

4.1.1 Parameter and hyperparameter learning

Assume we are given a set of measurementsf (x i ; yi )gn
i =1 � X � Y related to each other by an

unknown function f � : X ! Y and corrupted by some random noise� i with variance � 2 for

eachi = 1 ; : : : ; n.

yi = f � (x i ) + � i : (4.1)

We wish to approximate the target function f � using a model f : X ! Y de�ned by a set

of parameters which must be learned from the limited measurements at our disposal. In

order for the learning procedure to succeed, as we have seen in Chapter2, one often assumes

that f belongs to some hypothesis spaceF , and this space typically depends on additional

hyperparameters� . Assume we are given a loss functioǹ : Y � R ! [0; 1 ); we can learn a

model by �xing the hyperparameters � and minimizing the loss over the available training

samples:

f̂ � = arg min
f 2F �

nX

i =1

`(yi ; f (x i ))

In this paper we are concerned with kernel ridge regression: a speci�c kind of model where the

loss function is the squared loss̀ (y; a) = ky � ak2 and the hypothesis space is a reproducing

kernel Hilbert space (RKHS) H. Associated to H is a kernel function k : X � X ! R which

depends on hyperparameters . To ensure that the minimization problem is well de�ned we

https://github.com/falkonml/falkon
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must add a regularization term controlled by another hyperparameter � :

f̂ �; = arg min
f 2H

nX

i =1

kf (x i ) � yi k2 + � kf k2
H :

We have previously seen in Chapter2 that the solution to this minimization problem is

unique, but very expensive to compute requiringO(n3) operations and O(n2) memory. An

approximation to KRR considers a lower-dimensional subspaceH m � H as hypothesis space,

where H m is de�ned from m � n points Z = f zj gm
j =1 � X (Williams et al., 2001) such that

H m = spanf � (z1); : : : ; � (zm )g (4.2)

with � the feature map for which k (x; x 0) = h� (x); � (x0)i . While in the previous chapters we

have only considered taking the inducing pointsZ (also known as Nyström centers) from the

training set, it is also possible to view the points in Z as hyperparameters which determine

the hypothesis space. In fact this is common practice in sparse Gaussian Processes (GPs), and

in Section 3.4 sparse GPs were shown to achieve similar accuracy to Nyström KRR models

with up to one hundred times fewer inducing points (albeit with lower e�ciency). This large

reduction is possible thanks to the greater �exibility a�orded by freeing the inducing points z

from being tied to the training points (Titsias, 2009; Hensman, Fusi, et al.,2013; Hensman,

A. G. Matthews, et al., 2015).

Following Equation (2.92), but keeping track of dependencies on di�erent hyperparameters,

we have the regularized ERM solution

f̂ �;Z; =
mX

i =1

( e� � ) i k (�; zi ); with e� � = ( K >
nm K nm + �n K mm ) � 1K >

nm ŷ (4.3)

with ( K nm ) i;j = k (x i ; zj ) and (K mm ) i;j = k (zi ; zj ). The Nyström KRR (N-KRR) model

reduces the computational cost of �nding the coe�cients to O(n
p

n logn) when using e�cient

solvers (Rudi, Carratino, et al., 2017; Meanti, Carratino, Rosasco, et al.,2020; Ma et al., 2019),

see Chapter3.

The ideal goal of hyperparameter optimization is to �nd a set of hyperparameters� � (where

the space of� can be, for example,� = ( �; Z;  )) for which f̂ � � minimizes the test error (over

all unseen samples). By de�nition we cannot actually evaluate the test error: we can only use

the available data points. Naively one could think of minimizing the training error instead, but

such a scheme inevitably chooses overly complex models which over�t the training set. Instead

it is necessary to minimize a data-dependent criterionC

b� = arg min
�

C(f̂ � )
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such that model complexity is penalized. In practice aC is commonly chosen in such a way that

its expectation (with respect to the sampling of the data) is be equal to, or an upper bound of

the test error. In the next section we will look at several instances of penalized objectivesC

which appear in the literature and can be readily applied to N-KRR.

4.1.2 Objective functions

Validation error Possibly the most common procedure for HP tuning is to split the available

n training samples into two parts: a training set of sizentr and a validation set of sizenval .

The �rst is used to learn a model f̂ � with �xed hyperparameters � , while the validation set is

used to estimate the performance of di�erent HP con�gurations.

CVal (f̂ � ) =
1

nval

nvalX

i =1

kf̂ � (xval
i ) � yval

i k2 (4.4)

By using independent datasets for model training and HP selection,CVal becomes an unbiased

estimator of the test error and it can be proven that its minimizer is close to � � under certain

assumptions (Arlot and Bach, 2009). However, sincef̂ � has been trained with ntr < n samples,

there is a small bias in the chosen hyperparameters (Varma et al.,2006). Furthermore the

variance of the hold-out estimator is typically very high as it depends on a speci�c data split.

Two popular alternatives which address this latter point are k-fold cross-validation (CV) which

takes an average overk HP estimates, each obtained by using a di�erent train/validation split,

and leave-one-out CV (LOOCV).

Leave-one-out CV and Generalized CV The LOOCV estimator is an average of then

estimators trained on all n � 1 sized subsets of the training set and evaluated on the single

left out sample. The result is an almost unbiased estimate of the expected risk on the full

dataset (Vapnik, 1998). For linear models a computational shortcut allows to compute the

LOOCV estimator by training a single model on the whole dataset instead ofn di�erent

ones (Cawley et al.,2004). In particular in the case of N-KRR we can consider

CLOOCV (f̂ � ) =
1
n

nX

i =1

 
yi � f̂ � (x i )

1 � H ii

! 2

; (4.5)

where H is the hat matrix which maps response valueŝy to �tted values (model predictions):

H = K nm (K >
nm K nm + �n K mm ) � 1K nm .

GCV is an approach proposed in Golub et al. (1979) to further improve leave-one-out

cross-validation's computational e�ciency and to make it invariant to data rotations:

CGCV (f̂ � ) =
1
n

nX

i =1

 
yi � f̂ � (x i )

1
n Tr( I � H )

! 2

: (4.6)
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Cao et al. (2006) proved an oracle inequality which guarantees that the GCV estimator converges

to the neighborhood of � � when estimating the � hyerparameter in kernel ridge regression.

Complexity regularization Complexity regularization, or covariance penalties Mallows,

1973; Efron, 2004are a general framework for expressing objective functions as the empirical

error plus a penalty term to avoid overly complex models. For linear models the trace of the

hat matrix acts as penalty against complexity. Applying this principle to N-KRR gives the

objective

CC� Reg(f̂ �;Z; ) =
1
n

kf̂ �;Z; (X ) � ŷk2 +
2� 2

n
Tr(( fK + n� I ) � 1 fK ) (4.7)

where fK = K nm K y
mm K >

nm (the Nyström kernel), and Ay denotes the Moore-Penrose inverse

of matrix A. The �rst term can be interpreted as a proxy for the bias of the model, and the

second as a variance estimate. For estimating� in (N-)KRR, Arlot and Bach ( 2009) proved an

oracle inequality if a precise estimate of the noise� 2 is available.

Sparse GP Regression (Titsias, 2009) A di�erent approach comes from the Bayesian

perspective, where the equivalent of KRR is Gaussian Process Regression (GPR). Instead of

estimating the test error, HP con�gurations are scored based on the �probability of a model

given the data� (Rasmussen et al.,2005). A fully Bayesian treatment of the hyperparameters

allows to explicitly write down their posterior distribution, from which the HP likelihood has

the same form of the marginal likelihood in the denominator of the model parameters' posterior

distribution. Hence maximizing the (log) marginal likelihood (MLL) with gradient-based

methods is common practice in GPR.

Like with N-KRR, inducing points are used in GPR to reduce the computational cost, giving

rise to models such as SoR, DTC, FiTC (Quiñonero-Candela et al.,2005). Here we consider

the SGPR model proposed in Titsias (2009) which treats the inducing points as variational

parameters, and optimizes them along with the other HPs by maximizing a lower bound to the

MLL. The objective to be minimized is

CSGPR (f̂ �;Z; ) = log
�
�
� fK + n� I

�
�
� + ŷ> ( fK + n� I ) � 1ŷ +

1
n�

Tr( K � fK ): (4.8)

The �rst term of Equation ( 4.8) penalizes complex models, the second pushes towards �tting

the training set well, and the last term measures how well the inducing points approximate

the full training set. Recently the approximate MLL was shown to converge to its exact

counterpart (Burt et al., 2020), but we note that this does not guarantee convergence to the

optimal hyperparameters.
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4.1.3 Optimization algorithms

In this section we describe three general approaches which can be used to minimize the objectives

introduced above.

Grid search In settings with few hyperparameters the most widely used optimization algo-

rithm is grid-search which tries all possible combinations from a prede�ned set, choosing the

one with the lowest objective value at the end. Random search (Bergstra et al.,2012) and

adaptive grid search (used for SVMs in Steinwart and Thomann (2017)) improve on this basic

idea, but they also become prohibitively costly with more than � 5 HPs as the number of

combinations which need to be tested grows exponentially with the number of dimensions.

Black-box optimization A more sophisticated way to approach the problem is to take

advantage of regularities (and in particular smoothness) in the objective. Sequential model-

based optimization (SMBO) algorithms (Brochu et al., 2010; Snoek et al.,2012; Shahriari et al.,

2016) take evaluations of the objective function as input, and �t a Bayesian surrogate model to

such values. The surrogate can then be cheaply evaluated on the whole HP space to suggest

the most promising HP values to explore. These algorithms do not rely on gradient information

so they don't require the objective to be di�erentiable and can be applied to optimization of

discrete HPs. However, while more scalable than grid search, black-box algorithms become very

ine�cient in high ( i.e. > 100) dimensions.

Gradient-based methods Scaling up to even larger hyperparameter spaces requires exploit-

ing the objective's local curvature. While the optimization problem is typically non-convex, gra-

dient descent will usually reach a good local minimum. When the objective can be decomposed

as a sum over the data-points stochastic gradient descent (SGD) can be used, which may provide

computational bene�ts ( e.g. the SVGP objective (Hensman, Fusi, et al.,2013) is optimized

in mini-batches with SGD-like algorithms). In the context of KRR, gradient-based methods

have been successfully used for HP optimization with di�erent objective functions (Seeger,

2008; Keerthi et al., 2007). Recent extensions to gradient-based methods have been proposed

for those cases when the trained model cannot be written in closed form. Either by unrolling

the iterative optimization algorithm (Maclaurin et al., 2015; Franceschi et al., 2017; Grazzi

et al., 2020), or by taking the model at convergence with the help of the implicit function

theorem (Pedregosa,2016; Rajeswaran et al.,2019), it is then possible to di�erentiate a simple

objective (typically a hold-out error) through the implicitly de�ned trained model. This has

proven to be especially useful for deep neural nets (Lorraine et al.,2020), but is unnecessary

for N-KRR where the trained model can be easily written in closed form.
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Figure 4.1 Test-error and penalty (� ) as a function of optimization epoch on the small-HIGGS
dataset. m = 100 centers, d length-scales and� were optimized with equal initial conditions.
The three unbiased proxy functions lead to over�tting, while SGPR and the proposed objective
do not.

4.2 Hyperparameter optimization for Nyström-KRR

The objectives introduced in the previous section can be applied to HP tuning for kernel methods.

Always keeping in mind e�ciency but also usability, our goal is to come up with an objective

and associated optimization algorithm which: (a) can be used to tune the hyperparameters

of Nyström kernel ridge regression including the inducing points and (b) can be computed

e�ciently, even for large scale problems.

To satisfy the �rst point, an algorithm of the �rst-order is needed since the inducing points

are typically between a hundred and a few thousands (each point being of the same dimension

as the data). Regarding the second point we found empirically that the unbiased objectives are

prone to over�tting on certain datasets. An example of this behavior is shown in Figure4.1 on

a small subset of the HIGGS dataset (see ChapterA for a description of the datasets used)

The �rst three objectives (Hold-out, GCV and C-Reg) are unbiased estimates of the test error,

hence it is their variance which causes over�tting. To mitigate such possibility in our objective

we may look into the di�erent sources of variance: hold-out depends strongly on which part of

the training set is picked for validation, GCV and C-Reg don't rely on data splitting but still

su�er from high variance due to the random initial choice of inducing points.

We set out to devise a new objective in the spirit of complexity regularization, which is an

upper bound on the test error. A biased estimate � which is therefore over-penalizing � will

be more resistant to noise than an unbiased one (as was noted in Arlot (2007)), and we tailor

our objective speci�cally to N-KRR in order to explicitly take into account the variance from

inducing point selection.

We base our analysis of the N-KRR error in the �xed design setting, where the points

x i 2 X ; i = (1 ; : : : ; n) are assumed to be �xed, and the stochasticity comes from i.i.d. random
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noise variables� i ; : : : ; � n such that

E[� i ] = 0 and E[� >
i � i ] = � 2: (4.9)

Denote the empirical error of an estimatorf 2 H as Ê(f ) = n� 1kf (X ) � ŷk2 and the �expected�

error as E(f ) = n� 1kf (X ) � f � (X )k2, where f � is the noiseless target function from Equa-

tion ( 4.1). Note that this is di�erent from the random-design setting introduced in Chapter 2

where the data-points (x i ; yi ) are sampled from an unknown probability distribution. Consider

inducing points zj and a subspace ofH :

H m = spanf k (z1; �); : : : ; k (zm ; �)g; m � n; (4.10)

and let P be the orthogonal projection with range H m . Further denote the regularized empirical

risk as Ê� (f ) = Ê(f ) + � kf k2
H ,

Assessing a particular hyperparameter con�guration � = ( �; Z;  ) requires estimating the

expected test error at the empirical risk minimizer f̂ �;Z; trained with that con�guration; the

optimal HPs are then found by (�; Z;  ) � = arg min(�;Z; ) E(f̂ �;Z; ). The following theorem

gives an upper bound on the ideal objective; a full proof is provided in Section4.5.

Theorem 4.1

Under the assumptions of �xed-design regression we have that,

E[E(f̂ �;Z; )] �
2� 2

n
Tr(( fK + n� I ) � 1 fK )

+
2

n�
Tr( I � fK ) E[Ê� (f �; )]

+ 2 E[Ê� (f �; )] (4.11)

Proof of Theorem 4.1: Proof-sketch.

We decompose the test error expectation in the following manner

E[E(f̂ �;Z; )] � E
h

E(f̂ �;Z; ) � Ê(f̂ �;Z; )
| {z }

1

+ Ê(f̂ �;Z; ) + � kf̂ �;Z; k2
H � Ê� (P f �; )

| {z }
2

+ Ê� (f �; )
| {z }

3

i

by adding and subtracting Ê(f̂ �;Z; ), Ê� (P f �; ) and summing the positive quantity

� kf̂ �;Z; k2
H . Since f̂ �;Z; is the minimizer of Ê(f̂ �;Z; ) + � k(k2

H f̂ �;Z; ) in the space H m

and sinceP f �; 2 H m , the second term is negative and can be discarded.
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Term 1 is the variance of N-KRR and can be computed exactly by noting that

E[Ê(f̂ �;Z; )] = E[n� 1kf̂ �;Z; (X ) � f � (X ) � � k2]

= E[E(f̂ �;Z; )] + � 2 �
2
n

E[
D

f̂ �;Z; (X ) � f � (X ); �
E

]

where the �rst part cancels and we can ignore� 2 which is �xed and positive. Expanding

the inner product and taking its expectation we are left with

2
n

E[
D

f̂ �;Z; (X ) � f � (X ); �
E

] =
2� 2

n
Tr(( fK + n� I ) � 1 fK )

which is the e�ective dimension or the degrees of freedomof the hypothesis spaceH m ,

times the noise variance� 2.

Term 3 takes into account the di�erence between estimators inH and in H m . We begin

by upper-bounding the regularized empirical error ofP f �; with a �rst part containing

the projection operator and a second term without P

E[Ê(P f �; ) + � kP f �; k2
H ] � E[

2
n

kK 1=2(I � P)k2kf �; k2 + 2 Ê� (f �; )]:

Now kK 1=2(I � P)k2 � Tr
�
K � fK

�
the di�erence between full and approximate kernels,

and kf �; k2 � � � 1Ê� (f �; ) which leads us to the desired upper bound. �

We now make two remarks on computing Equation (4.11).

Remark 4.1 (Computing E[Ê� (f �; )]): In the spirit of complexity regularization we

can approximate this bias term by the empirical risk of N-KRR Ê� (f̂ �;Z; ), so that the

�nal objective will consist of a data-�t term plus two complexity terms: the e�ective

dimension and the Nyström approximation error.

Remark 4.2 (Estimating � 2): Once again following the principle of over-penalizing

rather than risking to over�t, we note that in binary classi�cation the variance of ŷ is

capped at 1 for numerical reasons, while for regression we can preprocess the data dividing

ŷ by its standard deviation. Then according to Equation (4.1) we must have that the

label standard deviation is greater than the noise standard deviation hence ^� 2 = 1 � � 2.
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Our �nal objective then has a form which we can compute e�ciently

CProp =
2
n

Tr(( fK + n� I ) � 1 fK )

+
2

n�
Tr( K � fK )Ê� (f̂ �;Z; )

+
2
n

kf̂ �;Z; (X ) � ŷk2 + � kf̂ �;Z; k2
H : (4.12)

We make two further remarks on the connections to the objectives of Section4.1.2.

Remark 4.3 (Similarities with complexity regularization): CProp has a similar

form to Equation ( 4.7) with an extra term which corresponds to the variance introduced

by the Nyström centers which we were aiming for (up to multiplication by the KRR bias).

Remark 4.4 (Similarities with SGPR): Equation (4.12) shares many similarities with

the SGPR objective: the log-determinant is replaced by the model's e�ective dimension

� another measure of model complexity � and the term Tr
�
K � fK

�
is present in both

objectives. Furthermore the data-�t term in CSGPR is

ŷ> ( fK + n� I ) � 1ŷ =
1
�

(n� 1kf̂ �;Z; (X ) � ŷk2 + � kf̂ �;Z; k2
H )

=
1
�

Ê� (f̂ �;Z; )

which is the same as in the proposed objective up to a factor� � 1.

4.3 Scalable approximations

Some practical considerations are needed to apply the objective of Equation (4.12) to large-scale

datasets � for which direct computation is not possible due to space or time constraints. We

examine the terms comprisingCProp and discuss their e�cient computations. In Figure 4.2, we

verify that the resulting approximation is close to the exact objective.

Starting with the last part of the optimization objective (the one which measures data-�t)

we have that

kf̂ �;Z; (X ) � ŷk2 + � kf̂ �;Z; k2
H = Y > (I � K nm (

Bz }| {
K >

nm K nm + n� K mm ) � 1K >
nm )Y

| {z }
= f̂ �;Z; (X )

which can be computed quickly using a fast, memory-e�cient N-KRR solver such as Falkon (Meanti,

Carratino, Rosasco, et al.,2020) or EigenPro (Ma et al., 2019). However we must also compute

the objective's gradients with respect to all HPs, and since e�cient solvers proceed by iterative

minimization, such gradients cannot be trivially computed using automatic di�erentiation,
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Figure 4.2 The e�ect of stochastic trace estimation. We plot the optimization curves of the
exact objective CProp (Deterministic ) and the approximated objectives with 10, 20 and 100
STE vectors. On the four datasets we optimizedm = 200 centers, � and  .

indeed, it would be in principle possible to unroll the optimization loops and di�erentiate

through them, the memory requirements for this operation would be too high for large datasets.

E�cient gradients A solution to compute the gradients e�ciently is to apply the chain rule

by hand until they can be expressed in terms of matrix vector products (r ker)v with ker any

kernel matrix ( i.e. K nm or K mm ) and v a vector. As an example the gradient of the data-�t

term is

r (ŷ> K nm B � 1K >
nm ŷ) = 2 ŷ> (r K nm )B � 1K >

nm ŷ � ŷ> K nm B � 1(r B )B � 1K >
nm ŷ

where we can obtain allB � 1K >
nm ŷ vectors via a non-di�erentiable N-KRR solver, and multiply

them by the (di�erentiable) kernel matrices for which gradients are required. Computing these

elementary operations is e�cient, with essentially the same cost as the forward passker v,

and can be done row-wise overker. Block-wise computations are essential for low memory

usage since kernel matrices tend to be huge but kernel-vector products are small, and they

allow trivial parallelization across compute units (CPU cores or GPUs). In many cases these

operations can also be accelerated using KeOps (Charlier, Feydy, Glaunès, Collin, et al.,2021).

The remaining two terms of Equation (4.12) are harder to compute. Note that in Tr
�
K � fK

�

we can often ignoreTr( K ) since common kernel functions are trivial when computed between

a point and itself, but more in general it only requires evaluating the kernel function n times.
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We thus focus on

Tr( fK ) = Tr( K nm K y
mm K >

nm ) (4.13)

and on the e�ective dimension

Tr(( fK + � I ) � 1 fK ) = Tr( K nm B � 1K >
nm ): (4.14)

Both these terms are traces of hugen � n matrices. By their symmetry we can express them as

squared norms reducing the space requirements ton � m, but they still remain slow to compute:

just the K >
nm K nm term costs more than training a N-KRR model with the Falkon solver.

Trace estimation A simple approximation can vastly improve the e�ciency of computing

Equations (4.13) and (4.14) and their gradients: stochastic trace estimation (STE). The

Hutchinson estimator (Hutchinson, 1990) approximates Tr( A) by 1
t

P t
i =1 r >

i Ar i where r i are

zero mean, unit standard deviation random vectors. We can use this to estimate Equation (4.14)

by running the Falkon solver with R = [ r1; : : : ; r t ] instead of the labelsŷ to obtain ( K >
nm K nm +

� K mm ) � 1K >
nm R, then multiplying the result by K >

nm R and normalizing by the number of

stochastic estimators t. The same random vectorsR can be used to computeK >
nm R for

Equation (4.13), coupled with the Cholesky decomposition ofK mm . STE reduces the cost

for both terms from O(nm2) to O(nmt ) which is advantageous sincet < m . In Figure 4.4 we

investigate whether the approximate objective matches the exact one, and howt a�ects the

approximation. The observed behavior is that as few as 10 vectors are enough to approximate

the full objective for a large part of the optimization run, but it can happen that such coarse

approximation causes the loss to diverge. Increasingt to 20 solves the numerical issues, and on

all the datasets tested we foundt = 20 to be su�cient.

Alternatively, Equation ( 4.13) can be approximated with a Nyström-like procedure: taking

a random subsample of sizep from the whole dataset, denoteK pm as the kernel matrix between

such p points and the m Nyström centers; then

Tr( K nm K y
mm K >

nm ) �
n
p

Tr( K pmK y
mm K >

pm )

which can be computed inpm2 + m3 operations. By choosingp � m the runtime is then

O(m3), which does not depend on the dataset size, and is more e�cient than the STE approach.

Unfortunately, this additional Nyström step cannot be e�ectively applied for computing

Equation (4.14) where the inversion ofB is the most time-consuming step.

4.4 Experiments

To validate the objective we are proposing for HP optimization of N-KRR models we ran a

series of experiments aimed at answering the following questions:
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Figure 4.3 E�ectiveness of test error proxies on a grid. The objective values (log transformed)
are plotted at di�erent �;  points for the small-HIGGS dataset. Lighter points indicate a
smaller objective and hence a better hyperparameter con�guration. The minimum of each
objective is denoted by a cross.

1. Since our objective is an upper-bound on the test error, is the over-penalization acceptable,

and what are its biases?

2. What is its behavior during gradient-based optimization: does it tend to over�t, does it

lead to accurate models?

3. Does the approximation of Section4.3 enable us to actually tune the hyperparameters on

large datasets?

The �rst point is a sanity check: would the objective be a good proxy for the test error in a

grid-search scenario over two hyperparameters (� and  with the RBF kernel). This doesn't

necessarily transfer to larger HP spaces, but gives an indication of its qualitative behavior. In

Figure 4.3 we compare 5 objective functions to the test error on such 2D grid. It is clear that

the three functions which are unbiased estimators of the test error have very similar landscapes.

Both SGPR and the proposed objective instead have the tendency toover-penalize: SGPR

strongly disfavors low values of� , while our objective prefers high� and  . This latter feature

is associated with simpler models: a high produces smooth functions and a large� restricts

the size of the hypothesis.

We will see that the subdivision of objective functions into two distinct groups persists

during optimization. However, in general it will not be true that the unbiased objectives produce

models with lower test error than the over-penalized ones. The best performing method is

going to depend on the dataset. The datasets used throughout this section are described in

Chapter A.
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4.4.1 Small-scale optimization

Figure 4.4 Comparing �ve objective functions for hyperparameter tuning. On each dataset we
optimized m = 100 Nyström centers, a separate length-scale for each dimension and� for 200
epochs with a learning rate of 0.05 using the Adam optimizer. Also reported is the standard
deviation from 5 runs of the same experiment with a di�erent random seed. Each dataset
has its own error metric. Labels of regression datasets were normalized to have unit standard
deviation.

We used the exact formulas from Sections4.1.2and 4.2, along with automatic di�erentiation

to minimize di�erent objectives on 20 datasets taken from the UCI repository, the LibSVM

datasets, or in-house sources. We automated the optimization runs as much as possible to avoid

having to set many meta-hyperparameters. The optimized hyperparameters were:m = 100

inducing points initialized to a random subset of the training set; a separate Gaussian kernel

length-scale for each data dimension, initialized with the median heuristic (Garreau et al.,

2017); regularization � set to 1=n. We used the Adam optimizer with �xed learning rate ( 0:05)

and default settings for 200 epochs. We used early stopping whenever the objective values

started increasing. The validation set size for theHold-out objective was �xed to 60% of the

full training data (larger than is common since the size of the considered hyperparameter space

was larger than that of the parameter space).

The results � shown in Figure 4.4 � con�rm our previous observations: there are some

datasets (among whichsmall-HIGGS, buzz, house-electric) on which the unbiased objectives
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over�t the training set while the proposed proxy function does not. In fact in some cases the

hyperparameters found with our objective are much better than the ones found, for example,

with the C-Reg objective. On the other hand, there is another group of datasets (e.g. protein,

energy or codrna) where the extra bias of the proposed objective becomes detrimental as the

optimization gets stuck into a suboptimal con�guration with higher test error than what would

be attainable with an unbiased objective.

Among the three unbiased objectives, hold-out clearly performs the worst. This is due to

its high variance, and could be mitigated (at the expense of a higher computational cost) by

using k-fold cross-validation. The GCV and C-Reg objectives perform similarly to each other

in many cases. Especially in the image datasets however, GCV over�ts more than C-Reg.

SGPR closely matches the proposed objective as it doesn't over�t. However, on several

datasets it produces worse HPs than our objective displaying a larger bias. On the other hand

there are other datasets for which the ranking is reversed, so there is no one clear winner.

We must note however that the SGPR objective cannot be e�ciently computed due to the

log-determinant term, when datasets are large.

4.4.2 Large-scale optimization

We tested the performance of the proposed objectiveCProp with stochastic trace estimation on

three large-scale datasets, comparing it against two variational sparse GP solvers (A. Matthews

et al., 2017; Paszke et al.,2019) � which also learn a compact model with optimized inducing

points � and a classic N-KRR model with a large number of centers chosen uniformly at random

from the training set learned with Falkon.

For our objective we again used the Adam optimizer. For the Flights and Higgs dataset

we trained with learning rate 0:05 for 20 epochs, while we trained Flights-Cls with a smaller

learning rate of 0:02 for 10 epochs. We used the Gaussian kernel with a single length-scale,

initialized as in (Meanti, Carratino, Rosasco, et al., 2020) (Flights  0 = 1, Flights-Cls  0 = 1,

Higgs  0 = 4) and � 0 = 1=n. We usedt = 20 stochastic trace estimation vectors for all three

experiments, sampling them from the standard Gaussian distribution. The STE vectors were

kept �xed throughout optimization. The conjugate gradient tolerance for the Falkon solver was

set to 5� 10� 4 for Flights-Cls, and 1� 10� 3 for Flights and Higgs (a higher tolerance corresponds

to longer training time), while we always capped the number of Falkon iterations to 100.

The results in Table 4.1 tell us that we can approach (but not quite reach) the performance

� both in terms of speed and accuracy � of a very large model using a small fraction of the

inducing points. They also support the conclusion that our objective is e�ective at optimizing

a large number of hyperparameters, at least on par with methods in the GPR framework.
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Table 4.1 Error and running time of kernel solvers on large-scale datasets. We compare our
objective with two approximate GPR implementations and hand-tuned N-KRR (Falkon).

CProp GPyTorch GPFlow Falkon

Flights
n � 106

error 0.794 0.803 0.790 0.758
time(s) 355 1862 1720 245
m 5000 1000 2000 105

Flights-
Cls
n � 106

error 32.2 33.0 32.6 31.5
time(s) 310 1451 627 186
m 5000 1000 2000 105

Higgs
n � 107

error 0.191 0.199 0.196 0.180
time(s) 1244 3171 1457 443
m 5000 1000 2000 105

4.5 Full Derivation of CProp

We split the proof of Theorem 4.1 into a few intermediate steps: after introducing the relevant

notation and de�nitions we give a few ways in which the Nyström estimator can be expressed,

useful in di�erent parts of the proof. Then we proceed with three more technical lemmas, used

later on. We split the main proof into two parts to handle the two terms of the decomposition

introduced in the main text of the paper: Lemma 4.6 for the sampling variance and Lemma4.7

for the inducing point variance. The proof of Theorem4.1 follows directly from the two variance

bounds.

4.5.1 De�nitions

Using the same notation as in the main text we are given dataf (x i ; yi )gn
i =1 � X � Y such that

yi = f � (x i ) + � i

where f � : X ! Y is an unknown function, and the noise� i follows Equation (4.9). We let H

be a RKHS and its subspaceH m = spanf k (z1; �); : : : ; k (zm ; �)g de�ned using the inducing

points f zj gm
j =1 � X . We de�ne a few useful operators, for vectorsv 2 Rm and w 2 Rn :

e� m : H ! Rm ; e� m = ( k (z1; �); : : : ; k (zm ; �))

e� �
m : Rm ! H ; e� �

m v =
mX

j =1

vj k (zj ; �)

� : H ! Rn ; � = ( k (x1; �); : : : ; k (xn ; �))

� � : Rn ! H ; � � w =
nX

i =1

wj k (x i ; �):
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Let � : H ! H = � � � be the covariance operator, and K = �� � 2 Rn� n the kernel operator.

Further de�ne K nm = � e� �
m 2 Rn� m , K mm = e� m

e� �
m 2 Rm� m , and the approximate kernel

fK = K nm K y
mm K nm 2 Rn� n . The SVD of the linear operator e� m is

e� m = U� V �

with U : Rk ! Rm , � the diagonal matrix of singular values sorted in non-decreasing order,

V : Rk ! H , k � m such that U � U = I , V � V = I . The projection operator with range H m is

given by P = V V � .

The KRR estimator f̂ �; is de�ned as follows,

f̂ �; = arg min
f 2H

1
n

kf (X ) � ŷk2 + � kf k2
H : (4.15)

It can be shown (Caponnetto et al., 2007) that f̂ �; is unique and can be expressed in closed

form as f̂ �; = � � (K + n� I ) � 1ŷ. In the proofs, we will also use the noise-less KRR estimator,

denoted by f �; and de�ned as,

f lg = arg min
f 2H

1
n

kf (X ) � f � (X )k2 + � kf k2
H : (4.16)

This estimator cannot be computed since we don't have access tof � , but it is easy to see that

f �; = � � (K + n� I ) � 1f � (X ): (4.17)

The N-KRR estimator, found by solving

f̂ �;Z; = arg min
f 2H m

1
n

kf (X ) � ŷk2 + � kf k2
H :

is unique, and takes the form (see Rudi, Camoriano, et al. (2015), Lemma 1)

f̂ �;Z; = ( P� P + n� I ) � 1P� � ŷ

where P is the projection operator with range H m .

The estimator f̂ �;Z; can be characterized in di�erent ways as described next.

4.5.2 Preliminary Results on the Nyström estimator

The following lemma provides three di�erent formulation of the Nyström estimator. We will

use the notation Ay to denote the Moore-Penrose pseudo-inverse of a matrixA.
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Lemma 4.1 (Alternative forms of the Nyström estimator): The following equalities

hold

f̂ �;Z; = ( P� P + n� I ) � 1P� � Y (4.18)

= V (V � � V + n� I ) � 1V � � � Y (4.19)

= e� �
m (K >

nm K nm + �n K mm )yK >
nm Y (4.20)

This Lemma is a restatement of results already found in the literature (e.g. in Rudi,

Carratino, et al. ( 2017), Lemmas 2 and 3) which are condensed here with slightly di�erent

proofs.

Proof of Lemma 4.1: Going from Equation (4.18) to Equation ( 4.19) consists in

expanding P = V V � and applying the push-through identity

(P� P + n� I ) � 1P� � Y = ( V V � � V V � + n� I ) � 1V V � � � Y

= V(V � � V V � V + n� I ) � 1V � � � Y

= V(V � � V + n� I ) � 1V � � � Y:

To go from Equation (4.20) to Equation ( 4.19) we split the proof into two parts. We �rst

expand Equation (4.20) rewriting the kernel matrices

e� �
m (K >

nm K nm + �n K mm )yK >
nm Y = e� �

m ( e� m � � � e� �
m + n� e� m

e� �
m )yK >

nm Y

= e� �
m ( e� m (� + n� I ) e� �

m )yK >
nm Y:

Then, we use some properties of the pseudo-inverse (Ben-Israel et al.,2003) to simplify

( e� m (� + n� I ) e� �
m )y, in particular, using the SVD of e� m , write

(U�
|{z}

F

V � (� + n� I )V
| {z }

H

� U �

| {z }
F �

)y:

Since U has orthonormal columns,F y = ( U�) y = � � 1Uy = � � 1U � . A consequence is

that ( F � )y = (� U � )y = (� � 1U � ) � = U� � 1. Then we split (F HF � )y into the pseudo-

inverse of its three components in two steps. Firstly (HF � )y = ( F � )yH y if H yH = I and

(F � )(F � )y = I :

1. SinceH = V � (� + n� I )V is invertible, H y = H � 1 and the �rst condition is veri�ed.

2. F � (F � )y = � U � U� � 1 = I .

Also we have (F HF � )y = ( HF � )yF y if F yF = I and HF � (HF � )y = I :
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1. F yF = � � 1U � U� = I ,

2. HF � (HF � )y = HF � (F � )yH y = HH y = I .

The end result of this reasoning is that

(F HF � )y = ( F � )yH � 1F y = U� � 1(V � (� + n� I )V ) � 1� � 1U �

and hence

e� �
m (K >

nm K nm + �n K mm )yK >
nm Y = V � U � (U� V � (� + n� I )V � U � )yU� V � � � Y

= V � U � U� � 1(V � (� + n� I )V ) � 1� � 1U � U� V � � � Y

= V(V � � V + n� I ) � 1V � � � Y

�

Another useful equivalent form, for the Nyström estimator is given in the following lemma

Lemma 4.2: Given the kernel matricesK nm 2 Rn� m , K mm 2 Rm� m , and the Nyström

kernel fK = K nm K y
mm K >

nm 2 Rn� n , the following holds

( fK + n� I ) � 1 fK = K nm (K >
nm K nm + n� K mm )yK >

nm (4.21)

Proof of Lemma 4.2: We state some facts about the kernel and image of the Nyström

feature maps

(ker e� m )? = span k(z1; �); : : : ; k(zm ; �) = Im e� �
m

(ker e� �
m )? = Im e� m = Im K mm = (ker K mm )? = W � Rm :

The spaceRm is hence composed ofRm = W � ker e� �
m . Take a vector v 2 ker e� �

m . We

have that e� �
m v = 0, and (K >

nm K nm + n� K mm )v = e� m (� � � + n� I ) e� �
m v = 0.

If instead v 2 W , then e� m (� � � + n� I ) e� �
m v 2 W . Hence we have that

K >
nm K nm + n� K mm : W ! W

and that K mm is invertible when restricted to the subspaceW , but also K >
nm K nm + n� K mm

is invertible on W. Furthermore by the properties of the pseudo-inverse, we have that

(K >
nm K nm + n� K mm )(K >

nm K nm + n� K mm )y = PW (4.22)

with PW the projector onto set W .
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Furthermore we have the following equalities concerning the projection operator:

K y
mm K mm = PW , as before; sinceK nm = � e� �

m , K nm PW = � e� �
m PW = K nm and

similarly its transpose K >
nm = e� m � � hencePW K >

nm = K >
nm .

Using these properties we can say

K nm K y
mm (K >

nm K nm + n� K mm ) = K nm K y
mm K >

nm K nm + n� K nm K y
mm K mm

= K nm K y
mm K >

nm K nm PW + n� K nm PW

= ( K nm K y
mm K >

nm + n� I )K nm PW

which implies that

(K nm K y
mm K >

nm + n� I ) � 1K nm K y
mm (K >

nm K nm + n� K mm ) = K nm PW :

Multiplying both sides by ( K >
nm K nm + n� K mm )y, and using Equation (4.22)

(K nm K y
mm K >

nm + n� I ) � 1K nm K y
mm PW = K nm PW (K >

nm K nm + n� K mm )y (4.23)

Hence we can write the left-hand side of our statement (Equation (4.21)), and use the

properties of projection PW and Equation (4.23) to get

(K nm K y
mm K >

nm + n� I ) � 1K nm K y
mm K >

nm

= ( K nm K y
mm K >

nm + n� I ) � 1K nm K y
mm PW K >

nm

= K nm PW (K >
nm K nm + n� K mm )yK >

nm

= K nm (K >
nm K nm + n� K mm )yK >

nm

which is exactly the right-hand side of our statement. �

Finally, the algebraic transformation given in the following lemma allows to go from a form

which frequently appears in proofs involving the Nyström estimator (Tr(( I � P)�) ) to a form

which can easily be computed: the trace di�erence between the full and the Nyström kernel.

Lemma 4.3: Let e� m : H ! Rm be the kernel feature-map of the inducing points with

SVD e� m = U� V � , such that the projection operator onto H m can be written P = V V � .

Also let fK = K nm K y
mm K >

nm be the Nyström kernel. Then the following equivalence holds

Tr(( I � P)�) = Tr(ker � fK ): (4.24)

Proof of Lemma 4.3: Note that we can write K mm = e� m
e� �

m = U� V � V � U � = U� 2U � ,

which is a full-rank factorization since both U� and � U> are full-rank. Then we can use
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the formula for the full-rank factorization of the pseudoinverse (Ben-Israel et al. (2003),

Chapter 1, Theorem 5, Equation 24) to get

K y
mm = ( U� V � V � U � )y = ( U�� U � )y

= U�(� U � U� 2U � U�) � 1� U �

= U� � 2U � :

Now we can prove the statement by expanding the left-hand side, and recallingU> U = I

Tr(( I � P)�) = Tr(( I � V V � )�)

= Tr(( I � V (� U � U� � 2U � U�) V � )� � �)

= Tr(�( I � V � U � ( e� m
e� �

m )yU� V � )� � )

= Tr(�� � � � e� �
m ( e� m

e� �
m )y e� m � � )

= Tr( ker � K nm K y
mm K >

nm ) = Tr( ker � fK ):

�

The following two lemmas provide some ancillary results which are used in the proof of the

main lemmas below.

Lemma 4.4: Let P be the projection operator onto H m , and f �; be the noise-less KRR

estimator. Then the following bound holds

kP f �; k2
H � k f �; k2: (4.25)

Proof of Lemma 4.4: This is a simple application of the de�nition of operator norm,

coupled with the fact that orthogonal projection operators have eigenvalues which are

either 0 or 1 (hence their norm is at most 1).

kP f �; k2
H � k Pk2kf �; k2

H

� k f �; k2
H :

�

Lemma 4.5: Recall the notation Ê� (f ) = n� 1kf (X ) � Yk2 + � kf k2
H , and let f �; be the

noise-less KRR estimator as before. Then the following statement holds:

kf �; k2
H � E[

Ê� (f �; )
�

] (4.26)
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where the expectation is taken with respect to the noise.

Proof of Lemma 4.5: Recall that in the �xed design setting, given a �xed ( i.e. not

dependent on the label-noise) estimator, we always have

E[Ê(f )] = E(f ) + � 2

where � 2 is the label-noise variance.

In our case, noting that L (f �; ) is always non-negative

kf �; k2
H =

�
�

kf �; k2
H

�
E(f �; ) + � kf �; k2

H

�

�
E(f �; ) + � 2 + � kf �; k2

H

�

=
E[Ê� (f �; )]

�
:

�

4.5.3 Proof of the main Theorem

The proof of Theorem 4.1 starts from the error decomposition found in Section4.2 which we

report here:

EE(f̂ �;Z; ) [� ]E
h

E(f̂ �;Z; ) � Ê(f̂ �;Z; )
| {z }

1

+ Ê(f̂ �;Z; ) + � kf̂ �;Z; k2
H � Ê� (P f �; )

| {z }
2

+ Ê� (P f �; )
| {z }

3

i

and proceeds by bounding terms1 (see Lemma4.6) and 3 (see Lemma4.7). After the two

necessary lemmas we restate the proof of the main theorem which now becomes trivial.

Lemma 4.6 (Bounding the data-sampling variance): Denoting by f̂ �;Z; the N-KRR

estimator, the expected di�erence between its empirical and test errors can be calculated

exactly:

E[E(f̂ �;Z; ) � Ê(f̂ �;Z; )] =
2� 2

n
Tr(( fK + n� I ) � 1 fK )

with � 2 the noise variance andfK the Nyström kernel.
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Proof of Lemma 4.6: For the sake of making the proof self-contained we repeat the

reasoning of Section4.2. Starting with the expectation of the empirical error we decompose

it into the expectation of the test error minus an inner product term:

E[Ê(f̂ �;Z; )] = E[
1
n

kf̂ �;Z; (X ) � f � (X ) � � k2]

= E[E(f̂ �;Z; )] + � 2 �
2
n

E[hf̂ �;Z; (X ) � f � (X ); � i ]:

The � 2 term is �xed for optimization purposes, so we must deal with the inner-product.

We use the form of f̂ �;Z; from Equation (4.20), Lemma 4.1, and E[� ] = 0, and to clean

the notation we call H := K nm (K >
nm K nm + n� K mm )yK >

nm :

2
n

E[hf̂ �;Z; (X ) � f � (X ); � i ] =
2
n

E[hH (f � (X ) + � ) � f � (X ); � i ]

=
2
n

E[� > H� ] =
2� 2

n
Tr( H );

and using Lemma4.2 H can be expressed as (fK + n� I ) � 1 fK .

Going back to the original statement we have

E[E(f̂ �;Z; ) � Ê(f̂ �;Z; )] = E[E(f̂ �;Z; ) � E (f̂ �;Z; ) +
2� 2

n
Tr(( fK + n� I ) � 1 fK )]

=
2� 2

n
Tr(( fK + n� I ) � 1 fK )

�

Lemma 4.7 (Bounding the Nyström variance): Under the �xed-design assumptions,

denote by P the orthogonal projector onto spaceH m , by Ê� (f ) the regularized empirical

risk of estimator f , and by f �; 2 H the noise-less KRR estimator. Then the following

upper-bound holds

E[Ê� (P f �; )] �
2

n�
Tr( K � fK ) E[Ê(f �; )] + 2 E[Ê� (f �; )]: (4.27)

Proof of Lemma 4.7: Note that for estimators f 2 H we can always writef (X ) = � f .

Hence for the projected KRR estimator we use that (P f �; )(X ) = � P f �; . We start by

rewriting the left hand side to obtain a di�erence between projected and non-projected
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terms:

E[Ê(P f �; ) + � kP f �; k2
H ] = E[

1
n

k� P f �; � f � (X ) � � k2 + � kP f �; k2
H ]

= E[
1
n

k� P f �; � f � (X )k2 +
1
n

k� k2 + � kP f �; k2
H ]

= E[
1
n

k� P f �; � � f �; + � f �; � f � (X )k2

+
1
n

k� k2 + � kP f �; k2
H ]

� E[
2
n

k� P f �; � � f �; k2

+
2
n

k� f �; � f � (X )k2 +
2
n

k� k2 + 2 � kP f �; k2
H ]

where we used the fact thatE[� ] = 0, and the triangle inequality in the last step.

By Lemma 4.4, and the de�nition of E[Ê(f )] we have that

E[
2
n

k� f �; � f � (X )k2 +
2
n

k� k2 + 2 � kP f �; k2
H ] � 2E[Ê(f �; )]:

Next we use again the de�nition of operator norm to deal with the di�erence between

projected and non-projected noise-less KRR estimators:

E[
2
n

k� P f �; � � f �; k2] =
2
n

k�( P � I )f �; k2

�
2
n

k�( I � P)k2kf �; k2:

The �rst part of this latter term is

k�( I � P)k2 = k(I � P)� > �( I � P)k � Tr(( I � P)� > �) = Tr(( I � P)�)

since the trace norm controls the operator norm, and using the cyclic property of the

trace and the idempotence of the projection operatorI � P . By Lemma 4.3 we have that

k�( I � P)k2 � Tr( K � fK ). For the second part we use Lemma4.5 so that

kf �; k2 � E[
Ê� (f �; )

�
]

which concludes the proof. �

We now have all the ingredients to prove Theorem4.1 which we restate below for the reader.
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Theorem: (restated from Section 4.2)

main-restated Under the assumptions of �xed-design regression we have that,

E[E(f̂ �;Z; )] �
2� 2

n
Tr(( fK + � I ) � 1 fK )

+
2

n�
Tr( K � fK ) E[Ê(f �; )]

+ 2 E[Ê(f �; )] (4.28)

Proof of Theorem 4.1: The decomposition is the same:

E[E(f̂ �;Z; )] � E
h

E(f̂ �;Z; ) � Ê(f̂ �;Z; )
| {z }

1

+ Ê(f̂ �;Z; ) + � kf̂ �;Z; k2
H � Ê� (P f �; )

| {z }
2

+ Ê� (P f �; )
| {z }

3

i

where 2 � 0. We may then use Lemma4.6 for term 1 and Lemma 4.7 for term 3 to

obtain

E[E(f̂ �;Z; )] �
2� 2

n
Tr(( fK + n� I ) � 1 fK ) +

2
n�

Tr( K � fK ) E[Ê� (f �; )] + 2 E[Ê� (f �; )]:

�

4.6 Conclusions

In this work, we improved the usability of large scale kernel methods proposing a gradient-based

solution for tuning a large number of hyperparameters, on large problems. The developed

algorithm is added to an existing library for large scale kernel methods with GPUs (available at

https://github.com/FalkonML/Falkon . We showed that it is possible to train compact Nyström-

KRR models if the centers are allowed to deviate from the training set, which can speed up

inference by orders of magnitude. A future work will be to consider complex parameterized

kernels which allow to improve the state of the art of kernel-based models on structured datasets

such as those containing images or text.

https://github.com/FalkonML/Falkon


Chapter 5

Exponential Rates for Multiclass

Learning

Consider the learning curves obtained by plotting test error as a function of model size (or

complexity). The classical hypothesis, backed by theoretical results, is that performance should

degrade as models get larger or less constrained (Hastie et al.,2009). However, it was recently

remarked that the learning curves observed in practice (in certain settings) can be quite di�erent

from those predicted in theory C. Zhang, Bengio, et al.,2021, and the over�tting phenomenon

does not occur. By the no free lunch theorem (Wolpert,1996), theoretical results critically

depend on the set of assumptions made on the problem. Such assumptions can be hard to

verify in practice, hence a possible way to tackle the seeming contradictions in learning theory

vs. practice is to consider a wider range of assumptions, and check whether the corresponding

results can explain empirical observations.

In the context of classi�cation, it is interesting to consider assumptions describing the

di�culty of the problem in terms of margin (Mammen et al., 1999; Tsybakov, 2004). It is well

known that very di�erent learning curves can be obtained depending on the considered margin

conditions Bartlett, Jordan, et al., 2006. Further, the behavior of the test error in terms of

misclassi�cation can be considerably di�erent from that induced by the surrogate loss function

(e.g. squared or logistic) used for empirical risk minimization (T. Zhang, 2004b; Bartlett, Jordan,

et al., 2006). An extreme case is when there is a hard margin among the classes. Indeed, in

this case the misclassi�cation error can decreaseexponentially fast as the number of points

increases, while the surrogate loss displays a polynomial decay. This behavior was �rst noted

in Koltchinskii et al. ( 2005) and Audibert et al. ( 2007) for a wide class of estimators (see also

Yao et al. (2007)), and reprised more recently in Pillaud-Vivien et al. (2018) and Nitanda et al.

(2019) for stochastic gradient descent. The e�ect of margin conditions has also been considered

for multiclass learning (T. Zhang, 2004a; D.-R. Chen et al., 2006; Mroueh et al., 2012), but not

in the hard-margin case. Interestingly, hard-margin and exponential rates have been studied by
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Cabannes et al. (2021) in the context of structured prediction (Nowak et al., 2019). However,

these latter results are restricted to least-squares based estimators.

The purpose of this chapter is twofold. On the one hand, we analyze the e�ect of margin

conditions, and in particular hard-margin conditions, for a wide class of multiclass estimators

derived from di�erent surrogate losses. On the other hand, we build on ideas in Mroueh et al.

(2012), Pillaud-Vivien et al. ( 2018), and Nitanda et al. ( 2019) to provide a simpli�ed and

self-contained treatment that naturally recovers results for binary classi�cation as a special

case. In particular, we note that, in the presence of a hard margin, the misclassi�cation error

curve does not exhibit any bias-variance trade-o�, thus providing a possible explanation to the

empirical observations that motivate our study.

The rest of the paper is organized as follows. In Section5.1 we describe the multiclass

classi�cation problem, the surrogate approach and the simplex encoding. In Section5.2 we

analyze the bias-variance decomposition for the misclassi�cation risk, discuss soft and hard-

margin conditions, and prove our main results of exponential convergence under assumptions of

hard margin. In Section 5.3 we validate the theory with experiments on synthetic data. Some

�nal remarks are provided in Section 5.4.

5.1 Setting

We consider a standard multiclass learning problem. Let (X; Y ) 2 X � Y be a random pair,

where X � Rd and Y is a �nite set of T � 2 elements. We call the elements ofY classes,

and a (measurable) function c : X ! Y a classi�er . As we have seen in Section2.1, The

misclassi�cation risk of a classi�er c is

E(c) = Pf c(X ) 6= Yg

which is minimized by the Bayes classi�er c� (see Equation (2.10)). We denote the minimum

risk by E� = E(c� ). Given n independent copies (x i ; yi ) of (X; Y ), i = 1 ; : : : ; n, the goal is to

learn a classi�er bc such that E(bc) � E � ! 0 in expectation asn ! 1 . More precisely, we are

interested in �nite-sample bounds of the form

E[E(bc)] � E � . an ;

where an ! 0 gives a rate of convergence.

Empirical risk minimization would prescribe to compute bc by minimizing a sample version

of E:
1
n

nX

i =1

1f c(x i ) 6= yi g
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However, the 0-1 loss is neither smooth nor convex, and optimizing it is in general an NP-hard

combinatorial problem (Feldman et al., 2012). A viable strategy is to replace the 0-1 loss with

a convexsurrogate, and the space of classi�ers with a suitable linear space of vector-valued

functions. To do this, it is necessary to choose a vector encoding of the classesY ,! Rp and

a decoding operatorD : Rp ! Y . One possibility, mentioned in Section2.1.2 is to use the

one-hot encoding, whereT classes are encoded asT-dimensional standard basis vectors. In this

Chapter we follow instead Mroueh et al. (2012), where the classes are encoded as the vertices

of a (T � 1)-simplex embedded inRT � 1 (see Figure5.1). For notational convenience we denote

Figure 5.1 Simplex encoding forT = 2 ; 3; 4.

Y itself with its simplex encoding, that is Y is the set of points in RT � 1 such that

kyk = 1 ; hy; y0i = �
1

T � 1
: (5.1)

The decoding operator assigns a vector to the class with largest projection, with ties arbitrarily

broken (see Figure5.2):

D : RT � 1 ! Y ; D (w) = arg max
y2Y

hw; yi : (5.2)

w
D(w)

w

D(w)

Figure 5.2 Simplex decoding (T = 2 ; 3).

In the case of binary classi�cation (T = 2), we have Y = f� 1g � R and D(w) = sgn(w).

A plug-in classi�er Df (x) = D(f (x)) can be de�ned by composing a vector-valued function

f : X ! RT � 1 with the decoding operator. The simplex coding o�ers some advantages over the
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one-hot. First, as we just saw, it is perfectly consistent with the standard (f� 1g; sgn) coding of

binary classi�cation. Second, it automatically satis�es structural constraints that other codings

need to impose additionally on the hypothesis class, such as the so-called sum to zero constraint.

This makes both numerical implementation and theoretical analysis more straightforward.

To identify the target function to plug into the decoder, we �x a convex surrogate loss

` : Y � RT � 1 ! [0; 1 ) with corresponding risk È (f ) de�ned in Equation ( 2.5). The risk

minimizer is

f ` = arg min
f 2 L 0 (Y ;RT � 1 )

È (f ): (5.3)

We then approximate f ` by a (uniform) approximator f � . At the current level of generality, �

simply denotes a generic parameter to be tuned. For instance,f � can be the minimizer of a

regularized risk, with � the regularization parameter. Finally, our classi�er will be D f̂ � , with

f̂ � the empirical estimate of f � based on the �nite samplesf (x i ; x i )gn
i =1 .

We are going to consider two types of loss functions. The �rst one is the square loss

`(w; y) = kw � yk2, for which f ` (x) = f � (x), where

f � (x) = E[Y j X = x]

is the regression function. The second case is a family of functions which depend on themargin

hw; yi , namely losses of the form` � (w; y) = � (hw; yi ) for a suitable (di�erentiable, convex)

function � : R ! [0; 1 ). Examples of � are

� (t) = ln(2) � 1 ln(1 + e� t ) (5.4)

which generalizes the logistic loss (see Equation (2.2)) to the multiclass setting and

� (t) = e� t (5.5)

which generalizes the exponential loss. For margin losses, we will denote the minimizerf `

by f � . Note that in binary classi�cation the square loss is itself a function of the margin,

`(w; y) = k1 � wyk2, while for T � 3 this is no longer the case.

5.2 Analysis

We start by analyzing the peculiar structure of the bias-variance decomposition in classi�cation.

As we will see, the key point is that the bias can be made zero under suitable margin condi-

tions. When only the variance is left, the misclassi�cation error can be controlled by uniform

concentration. These general facts can then be applied to di�erent loss functions, leading to

our main results.
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5.2.1 Bias-variance for plug-in classi�ers

To analyze the performance of a plug-in classi�erD f̂ � , we decompose the excess misclassi�cation

risk as

E(D f̂ � ) � E � = E(D f̂ � ) � E (Df � ) (5.6)

+ E(Df � ) � E (Df ` ) (5.7)

+ E(Df ` ) � E � : (5.8)

The last term results from replacing the 0-1 loss with the surrogate loss̀ . Loss functions

for which Df ` = c� , and therefore Equation (5.8) is zero, are calledFisher consistent (or

classi�cation calibrated ). Fisher consistency is a common and well characterized property T.

Zhang, 2004b. In particular, the square loss is Fisher consistent (see Lemma5.2). For margin

losses, consistency will be assumed in all that follows, and shown in some examples.

f `

f �

f � �

�

The term (5.7) is a bias term. Crucially, it can be set

to zero for a wide range of parameters� . The idea is that

we can haveE(Df � ) = E(Df ` ) even whenÈ (f � ) � E ` (f ` ).

Here is a fundamental di�erence between regression and

classi�cation. While in regression f ` is a target point, in

classi�cation it is rather a representative of the target class

[f ` ] = f f 2 L 0(X ; RT � 1)jDf = Df ` almost surelyg: (5.9)

Hence, it is enough forf � to land in [ f ` ], possibly far from f ` itself. This is easier if the class

[f ` ] is �large�, which can be ensured by imposing special margin conditions. Assuming that̀ is

Fisher consistent, a generic functionf lies in [f ` ] if and only if

Df = c� almost surely: (5.10)

Chosen a Fisher consistent loss and put the bias to zero, all that's left is the variance term

(5.6):

E(D f̂ � ) � E � = E(D f̂ � ) � E (Df � ): (5.11)

At this point, � is set and needs no trade-o�. Fast convergence of the variance, and therefore of

the whole excess misclassi�cation risk, can be derived using once again margin conditions.

5.2.2 Margin conditions

In binary classi�cation, the margin conditions, also known as Tsybakov's low-noise assumptions

Mammen et al., 1999; Tsybakov, 2004; Koltchinskii et al., 2005; Audibert et al., 2007, are a set

of assumptions under which it is possible to obtain fast convergence (up to exponential) for
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plug-in classi�ers. They can be stated as follows: there exists� 2 (0; 1 ] such that, for every

� > 0,

Pfj f � (x)j � � g . � � : (5.12)

In the extreme case of� = 1 , we get

jf � (x)j � � almost surely; (5.13)

which is sometimes referred to as thehard-margin condition.

Following Mroueh et al., 2012; Nowak et al., 2019, we can generalize Equations (5.12)

and (5.13) to the multiclass setting. For w 2 RT � 1, we de�ne the decision margin

M (w) = min
y6= D (w)

hw; D(w) � yi : (5.14)

M (w) is the di�erence between the largest and the second largest projection ofw onto Y,

namely the con�dence gap between �rst and second guess. ForT = 2, we have M (w) = 2 jwj.

In general, we say that a function f : X ! RT � 1 satis�es the margin condition with exponent

� 2 (0; 1 ] if, for every � > 0,

Pf M (f (x)) � � g . � � : (5.15)

In particular, one can take f = f � , which for T = 2 gives back Equation (5.12). Again, � = 1

gives the hard-margin condition (see Figure5.3)

M (f (x)) � � almost surely: (5.16)

Intuitively, these conditions say that the probability of falling in a �runo� zone�, where the

�

�

Figure 5.3 Hard-margin condition (T = 2 ; 3).

plugging-in function would be �uncertain�, is either (polynomially) small (5.15), or zero (5.16).

The reason why we state Equations (5.15) and (5.16) for an arbitrary f is that we will transfer

these properties to minimizersf ` (and f � ) of general (regularized) losses, including but not

limited to the square. Combining Fisher consistency and hard margin, we obtain the following

stronger condition.
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Lemma 5.1: A function f 2 L 0(X ; RT � 1) satis�es Equations (5.10) and (5.16) if and only

if

min
y6= c� (x)

hf (x); c� (x) � yi � � almost surely: (5.17)

Proof of Lemma 5.1: First note that, if (5.10) holds, then (5.17) is the same as(5.16).

Now suppose Equation (5.17) holds. Then

hf (x); c� (x)i > max
y6= c� (x)

hf (x); yi ;

henceDf (x) = c� (x), that is, Equation ( 5.10) holds too. �

Beside (5.15) and (5.16), we will also consider another generalization of(5.13) which is

independent of any particular classi�er, and instead is stated purely in terms of the conditional

probabilities. To illustrate such a condition, we note that Equation ( 5.13) is equivalent to

saying that either � (1jx) or � (� 1jx) is no less than 1=2 + �=2 (for almost every x, there is one

class with probability bounded away from coin �ipping). This in turn is equivalent to

min
y6= c� (x)

� (c� (x) j x) � � (y j x) � � almost surely; (5.18)

which says that the most probable class has almost always an edge of� over the second most

probable class. Since this inequality makes sense for arbitraryT, we take it as our hard-margin

condition for multiclass problems. More generally, one may consider problems where for some

� 2 (0; 1 ] and all � > 0,

P

(

min
y6= c� (x)

� (c� (x) j x) � � (y j x) � �

)

. � � ; (5.19)

generalizing Equation (5.12) to T � 2.

The margin conditions on the conditional probabilities can be related to those expressed on

classi�ers.

Lemma 5.2: We have Df � = c� almost surely. Moreover, Equation (5.18) holds if and

only if f � satis�es (5.16).

Proof of Lemma 5.2: Recalling the de�nition of Y in Equation ( 5.1), let

� = f p 2 Y : py � 0;
X

y2Y

py = 1g
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be the probability simplex on Y, and let coY be the encoding simplex de�ned as the convex

hull of Y. Then � and coY are canonically isomorphic via the barycenter coordinate map

� : � ! coY; � (p) =
X

y2Y

pyy:

Now consider the map

� : X ! � ; � (x) = [ � (y j x)]y2Y :

Then we have� � � = f � . Furthermore

arg max
y2Y

hf � (x); yi = arg max
y2Y

h
X

y02Y

� (y0 j x)y0; yi

= arg max
y2Y

X

y02Y

� (y0 j x)hy; y0i

= arg max
y2Y

� (y j x)

The same holds for maximizing overy 6= c� (x), whence the second claim of the Theorem.

�

5.2.3 Misclassi�cation comparison

In view of Equation (5.11), we need in fact to compare the misclassi�cation risk of two classi�ers.

This can be done by introducing a bounding distance. Since the distance will be symmetric,

the resulting bound gives a symmetric comparison between any two classi�ers, as opposed to

the usual comparison of a classi�er with respect to a �xed (Bayes) rule. For this reason, the

following results may be of independent interest.

We de�ne the Hamming distanceof c0; c 2 L 0(X ; Y) as

r (c0; c) = P
�
c0(x) 6= c(x)

	
:

The Hamming distance bounds the di�erence of misclassi�cation risk.

Lemma 5.3: For every c0; c 2 L 0(X ; Y),

jE(c0) � E (c)j � r (c0; c): (5.20)
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Proof of Lemma 5.3: By direct computation,

jE(c0) � E (c)j =
�
�E

�
1f c0(x) 6= yg � 1f c(x) 6= yg

� ��

� E
� ��1f c0(x) 6= yg � 1f c(y) 6= yg

�
� �

� E
�
1f c0(x) 6= c(x)g

�
= r (c0; c):

�

The next step is to bound the Hamming distance between two plug-in classi�ers.

Lemma 5.4: For every f 0; f 2 L 1 (X ; RT � 1),

r (Df 0; Df ) � P

8
<

:
jf 0� f j1 �

s
T � 1

2T
M (f (x))

9
=

;
: (5.21)

Proof of Lemma 5.4: Let Df 0(x) = y0 6= y = Df (x). Then

min
j 6= y0

hy0� j; f 0(x)i = hy0; f 0(x)i � max
j 6= y0

hj; f 0(x)i

� h y0; f 0(x)i � h y; f 0(x)i

� h y0� y; f 0(x)i � h y0� y; f (x)i

= hy0� y; f 0(x) � f (x)i

� k y0� ykkf 0(x) � f (x)k

�

s
2T

T � 1
kf 0� f k1 :

�

Now we let the samples come into play. Letf̂ 2 L 1 (X ; RT � 1) be a function of (x i ; yi ),

i = 1 ; : : : ; n, such that, for every � > 0 and some constantb > 0,

P
n

kf̂ � f k1 > �
o

. exp(� n� 2=b2): (5.22)

Then the following polynomial and exponential bounds hold true.

Proposition 5.2.1

Supposef satis�es the margin condition of Equation (5.15), and let f̂ obey the concentration

inequality ( 5.22). Then

E[jE(D f̂ ) � E (Df )j] . b� ( 2T
T � 1) �= 2( log n �= 2

n ) �= 2: (5.23)
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If f satis�es the hard-margin condition (5.16), then

E[jE(D f̂ ) � E (Df )j] . exp(� n� 2=b2): (5.24)

Proof of Proposition 5.2.1 : By Lemma 5.3 and Lemma 5.4,

E[jE(D f̂ ) � E (Df )j] � E[r (D f̂ ; Df )]

� Ef (x i ;yi )g
n
i =1

2

4Ex

2

41

8
<

:
kf̂ � f k1 �

s
T � 1

2T
M (f (x))

9
=

;

3

5

3

5 :

Let  =
q

T � 1
2T M (f (x)) and E = f M (f (x)) � � g. Then we have

Ex

h
1fk f̂ � f k1 �  g

i
= Ex

h
1fk f̂ � f k1 �  g j E

i
Pf Eg

+ EX

h
1fk f̂ � f k1 �  g j E {

i
P

n
E {

o

� Pf Eg + 1fk f̂ � f k1 �

s
T � 1

2T
� g;

where Pf Eg . � � by (5.15). Moreover, thanks to Equation (5.22),

Ef (x i ;yi )g
n
i =1

2

41

8
<

:
kf̂ � f k1 �

s
T � 1

2T
�

9
=

;

3

5 = P

8
<

:
kf̂ � f k1 �

s
T � 1

2T
�

9
=

;

. exp(� n
T � 1

2T
� 2=b2):

Setting � 2 = b2 2T
T � 1(log(n�= 2)=n), we obtain the �rst claimed inequality. The second

inequality follows similarly using (5.16) in place of (5.15). �

5.2.4 Main results

In this section we establish exponential convergence of plug-in classi�ers under assumptions of

hard margin. We assume the setting of Section5.1, and use the arguments of Sections5.2.1

to 5.2.3. The main results are given for two cases of loss functions, �rst for the square loss

(namely, for the regression function), and then for a general family of margin losses. We will

also be making the additional assumptions below.

Assumption 5.1. Let f ` 2 L 1 (X ; RT � 1), then

kf � � f `k1 �!
�

0: (5.25)

Further, let f̂ � 2 L 1 (X ; RT � 1) be an estimate off � .



5.2 Analysis 96

Assumption 5.2. We assume that, for every� > 0 and someb > 0, the following concentration

bound holds true:

P
n

kf̂ � � f � k1 > �
o

. exp(� n� 2=b2): (5.26)

Regularization methods in reproducing kernel Hilbert spaces (RKHS) (Schölkopf and Smola,

2001; Steinwart and Christmann, 2008) provide one framework where the properties5.1, 5.2

can be satis�ed. In particular, one can �x a separable RKHS H � L 0(X ; RT � 1) with norm

k�kH , and de�ne

f � = arg min
f 2H

È (f ) + � kf kH ; � � 0:

If H has reproducing kernelk : X �X ! R such that supx k(x; x ) � � 2 (see Assumption2.1), H

is continuously embedded in the space of bounded continuous functions onX , with k�k1 � � k�kH .

Hence, the uniform bounds needed to satisfy Assumptions5.1 and 5.2 may be derived from

bounds in the RKHS norm. The estimate f̂ � can be computed with a variety of methods, such

as empirical risk minimization (ERM) (Schölkopf and Smola, 2001), gradient descent (GD) Yao

et al., 2007and stochastic gradient descent (SGD) Robbins et al.,1951. We have seen in detail

the �rst two ways in Chapter 2.

Lemma 5.5: Suppose Equation (5.16) holds true with f = f ` and � =  . Then, under the

Assumption 5.1, there is � � such that Equation (5.17) holds true with f = f � and � = = 2

for every � � � � .

Proof of Lemma 5.5: Let Df ` (x) = y� = c� (x) (recall that ` is Fisher consistent), and

let

a = hf � (x); y� i � max
y6= y�

hf � (x); yi :

Then

a = hf ` (x); y� i � h f ` (x) � f � (x); y� i
b

� max
y6= y�

hf � (x); yi

c

;

where b � k f ` � f � k1 ; and

c = max
y6= y�

(hf ` (x); yi + hf � (x) � f ` (x); yi )

� max
y6= y�

hf ` (x); yi + max
y6= y�

hf � (x) � f ` (x); yi

� max
y6= y�

hf ` (x); yi + kf � � f `k1 :
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In view of Assumption 5.1, there is � � such that kf � � f `k1 � = 4. Hence, for every

� � � � , using (5.16) we obtain

a � h f ` (x); y� i � = 4 � max
y6= y�

hf ` (x); yi � = 4

= M (f ` (x)) � = 2 �  � = 2 = = 2:

This implies (5.10), and thus (5.16), for f = f � and � = = 2. The assertion now follows

from Lemma 5.1. �

Square loss. We can now state our �rst main result.

Theorem 5.1

Suppose the hard-margin condition

min
y6= c� (x)

� (c� (x) j x) � � (y j x) � � almost surely:

Then, under Assumptions 5.1 and 5.2, there is � � such that, for every � � � � ,

E[jE(D f̂ ) � E (Df 0)j] . exp(� n� 2�=b 2):

Proof of Theorem 5.1: First, recall that, thanks to Lemma 5.2, Df � = c� and

M (f � (x)) � � almost surely. Moreover, by Lemma5.5 (and Lemma 5.1), we haveDf � = c�

and M (f � (X )) � �=2 almost surely for � � � � . Thus, (5.11) holds true, and the claim

follows from Proposition 5.2.1. �

Margin losses. We now consider surrogate losses of the form

` � (w; y) = � (hw; yi ) (5.27)

for some scalar function� : R ! [0; 1 ). We denote the minimizer of the corresponding risk

E� (f ) = E[� (hf (X ); Y i )] by

f � = arg min
f 2 L 0 (X ;RT � 1 )

E� (f ): (5.28)

Following and generalizing the analysis of T. Zhang,2004b; Nitanda et al., 2019, we want to

extract an inner risk from E� . The idea is to expand

E� (f ) = Ex

2

4
X

y2Y

� (hf (x); yi )� (y j x)

3

5
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and isolate the argument ofEx [�] removing the dependence onx. Recalling the de�nition of �

in Lemma 5.2, we introduce the inner risk

�( p; w) =
X

y2Y

� (hw; yi )py ; p 2 � ; w 2 RT � 1; (5.29)

and the inner risk minimizer

h� : � ! RT � 1; h� (p) = arg min
w2 RT � 1

�( p; w): (5.30)

Note that, denoting p(x)y = � (y j x), we have

f � (x) = h� (p(x)) : (5.31)

In the following, we will be making two further assumptions:

Assumption 5.3. ` � is Fisher consistent;

Assumption 5.4. hh� (p); yi is a non-decreasing function ofpy .

As previously mentioned, losses satisfying Assumption5.3 are indeed abundant. For a

general characterization of Fisher consistency in the framework of simplex encoded classi�cation,

we refer to Mroueh et al., 2012. Assumption 5.4 is easily met by many functions � , as the next

lemma shows. Essentially, it is su�cient for the loss to be decreasing and convex. Notable

examples of� satisfying both 5.3 and 5.4 are the logistic loss� (t) = ln(2) � 1 ln(1 + e� t ), and

the exponential loss� (t) = e� t .

Lemma 5.6: Suppose� is twice di�erentiable, non-increasing and convex. Then Assump-

tion 5.4 holds true.

Proof of Lemma 5.6: Let 	( p) = r h � �( p; h� (p)), such that

	( p) =
TX

i =1

Yi � 0(hh(p); Yi i )pi :

By de�nition of h� , we have 	( p) = 0, hence its Jacobian J	( p) = 0 as well. Calculating

the derivatives, and denoting by Y (j )
i the j -th component of the i -th class vector, the
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Jacobian matrix's entries are

0 =
@	( p) j

@pk
=

TX

i =1

�
Y (j )

i pi
@�0(hh(p); Yi i )

@pk
+ Y (j )

i � 0(hh(p); Yi i )1[k= i ]

�

=
TX

i =1

�
Y (j )

i pi � 00(hh(p); Yi i )
�

Yi ;
@h(p)
@pk

��
+ Y (j )

k � 0(hh(p); Yk i );

and each column is

TX

i =1

�
pi � 00(hh(p); Yi i )Yi

�
Yi ;

@h(p)
@pk

��
+ � 0(hh(p); Yk i )Yk :

For any k 2 [T], we can compute the following inner product, noting that it too must be

equal to zero

0 =
�

@h(p)
@pk

;
@	( p)
@pk

�
=

TX

i =1

 

pi � 00(hh(p); Yi i )
�

Yi ;
@h(p)
@pk

� 2
!

+ � 0(hh(p); Yk i )
�

Yk ;
@h(p)
@pk

�
:

Since� 00� 0 and � 0 � 0, we must haveh@h� (p)
@pk

; Yk i � 0, which proves the claim. �

In order to derive exponential rates for margin losses, we need to transfer the hard-margin

condition from the conditional probabilities to the minimizer of the margin loss. This is the

content of the following lemma.

Lemma 5.7: Suppose that(5.18) holds true with � =  . Then, under the Assumption 5.4,

Equation (5.16) holds true with f = f � and � = m( ), where

m( ) = max
y;j 2Y

minf M (h� (p)) : p 2 � ; py � pj = 2  g: (5.32)

Proof of Lemma 5.7: Let p(X )y = � (y j X ). By ( 5.31) we have

M (f � (X )) = M (h� (p(X ))) :

Let y; j 2 Y be such that

M (h� (p(X ))) = hh� (p(X )) ; yi
a

� h h� (p(X )) ; j i

b

:
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In view of Equation (5.18) and Assumption 5.4, there is p 2 � with py � pj = 2 � such that

a decreases andb increases, hence

M (h� (p(X ))) � M (h� (p)) :

Taking the minimum over such a p and the maximum over y and j , we obtain the assertion.

�

To visualize the lower bound m( ), note that, for T = 2, it corresponds to maxf h� (1=2 +

 ); � h� (1=2 �  )g (cf. with Nitanda et al. ( 2019)).

We can �nally prove our main result for margin losses.

Theorem 5.2

Suppose the hard-margin condition

min
y6= c� (X )

� (c� (X ) j X ) � � (y j X ) � � almost surely:

Then, under Assumptions 5.1 to 5.4, there is � � such that, for every � � � � ,

E
h
jE(D f̂ ) � E (Df 0)j

i
. exp(� n m(� )2�=b 2); (5.33)

where m(� ) is de�ned in Lemma 5.7.

Proof of Theorem 5.2: By Assumption 5.3, we haveDf � = c� almost surely. Moreover,

thanks to Lemma 5.7, we haveM (f � (X )) � m(� ) almost surely. Now, Lemma5.5 (together

with Lemma 5.1) gives that Df � = c� and M (f � (X )) � m(� )=2 almost surely for � � � � .

Therefore, we have (5.11), and Proposition 5.2.1 yields the result. �

The critical value � � in Theorem 5.1 and Theorem 5.2 can be quanti�ed in presence of

additional assumptions on the distribution. For example, consider the case of a kernel ridge

regression estimator in a separable RKHSH. Suppose that the kernelk : X � X ! R is

bounded by � , and de�ne the covariance operator as

T : H ! H ; T =
Z

X
kx 
 kx d� X (x);

where kx = k(�; x) and � X is the marginal distribution on X . Further, suppose there exist

g 2 H and s 2 (0; 1=2] such that

f ` = T sg:
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This is known as the source condition, and it corresponds to assuming Sobolev smoothness of

the regression function. Then, it can be proved that (Caponnetto et al.,2007)

kf � � f `kH � � skgkH :

As a consequence,� � in Lemma 5.5, and therefore in Theorem5.1, may be picked as� � =

(�=4� kgkH )1=s.

We �nally remark that analogous results to Theorem 5.1 and Theorem 5.2 may be proved

under the soft-margin condition (5.19), using the polynomial bound of Proposition 5.2.1.

5.3 Experiments

This section is concerned with empirically verifying the theoretical analysis presented in

Section 5.2. We will �rst consider a classi�cation problem where the true function satis�es the

hard-margin condition (de�ned in Equation ( 5.16)), and show how � under optimization of a

surrogate loss by gradient descent � the misclassi�cation loss decreases more quickly than the

surrogate loss. Then we will take into account a di�erent synthetic dataset, where the weaker

soft-margin or low noise condition (see Equation (5.15)) is satis�ed. We will verify how the

rate of change of the misclassi�cation error with the number of points in the dataset adheres to

the theoretical rates.

Figure 5.4 Synthetic datasets. In the left panel, the three classes are separated by a hard
margin of length � . In the right panel there is no hard margin, but the probability of a point
falling close to the boundary is decreasing (soft-margin).

Initially we compare three di�erent surrogate loss functions: the logistic, the exponential

and the square loss. We generated data in two dimensions such that the hard-margin condition

holds with margin � , see Figure5.4, left panel for a sample dataset. A random Fourier features
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(RFF) model Rahimi et al., 2008approximates potentially in�nite dimensional feature maps in

a reproducing kernel Hilbert space (RKHS) using �nite dimensional randomized maps: given

a kernel function k(x; x 0) = h (x);  (x0)i H the feature map  2 H can be approximated with

function z : RD ! RR such that h (x);  (x0)i H � h z(x); z(x0)i R. Finally z(x) can be used

instead of the sample itself in a linear model with parametersw 2 RR : f (x) = w> z(x). See

Section 2.5.1 for more details on the RFF model.

We learn the parametersw by minimizing the regularized surrogate loss with gradient

descent. In Figure 5.5 we plot the 0-1 error, as well as the surrogate losses on unseen data

as a function of the optimization epoch. A separate model was trained for each of the three

surrogates 20 times with a new synthetic dataset. The intuition behind exponential rates in

hard-margin classi�cation can be veri�ed by noting how the 0-1 loss converges at a much faster

pace than the surrogate: from another perspective, when the 0-1 loss is zero the surrogate loss

can still decrease for many epochs. We can further notice how not all surrogates are equal:

for both the small ( � = 0 :1) and the larger margin (� = 0 :2), the square loss leads to faster

convergence of the 0-1 error than both exponential and logistic losses.

Figure 5.5 Optimization curves on hard-margin classi�cation with di�erent surrogate losses.
Each panel contains two curves calculated on datasets with di�erent margins� . The top row
shows the surrogate loss, the bottom row shows the 0-1 loss.

For the second experiment, we generated a synthetic dataset in two dimensions and with

three classes such that the probability of a point falling close to the decision boundary decreases

with the distance to the boundary itself as M � for margins M smaller than 1 (see Equation (5.15)

and Figure 5.4, right panel). We then used a linear model, trained by minimizing the regularized
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logistic loss with gradient descent until convergence. We repeated the experiment 100 times for

datasets generated with �ve di�erent values of � (a higher � results in an easier problem), and

an increasing number of points, and recorded the average 0-1 loss over unseen data. We then

plot the 0-1 loss against the number of points for each value of� , and observe that the trends

are approximately linear on a log-log plot (see Figure5.6). We �t a straight line for each � ,

and look at how the slope of this line changes with� . From Proposition 5.2.1 we expect the

error to drop more rapidly with higher � ; in particular the rate of decrease is predicted to be

n� �= 2 ignoring constant and logarithmic factors. By plotting the slopes of the error rates we

obtain a straight line with slope � 0:35, which is close to the prediction of� 0:5 (see the inset

on Figure 5.6).

Figure 5.6 Main �gure : error rates for multiclass classi�cation with polynomial soft-margin
with increasing dataset size.Inset: Linear rate of convergence of the error with� .

5.4 Conclusions

In this chapter we have shown how, under the hard-margin condition and for a very general

framework which encompasses many di�erent models and surrogate losses, the multiclass

classi�cation error exhibits exponentially fast convergence. Along the way we have provided an

error decomposition where the bias term disappears. This kind of result �ts with the recent

empirical observations of how even highly overparametrized models do not over�t the training

data. Our analysis can be experimentally veri�ed for several losses, and di�erent margin

conditions.

Several possible extensions of this work have been left for future work. Beyond the hard-

margin and low-noise conditions, robustness with respect to di�erent kinds of noise may be
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studied. The explicit application of our bounds to speci�c models � which was sketched in this

paper for kernel ridge regression � could be especially interesting for (deep) neural networks, for

which fast convergence on classi�cation problems has been ascertained. Indeed, for the latter

models, the interplay of exponential convergence and overparameterization is a further topic of

great interest.



Part II

Applications



Chapter 6

Fast Object Segmentation on the

iCub Robot

Starting from this chapter, until the end of the thesis, we will shift our focus from the

methodological contributions and theoretical analyses concerning kernel methods and supervised

learning, to practical applications of kernel-based learning and other kinds of models to real-

world problems. Some of the techniques developed in PartI will be used here to perform

prediction tasks in complex pipelines, with the goal being not the analysis of the pipeline

or algorithm itself, but instead the evaluation and interpretation of the model forecasts on

unseen data-points. We will describe in some detail the settings where Falkon has been

used, the practical goals of the overall system, its design, and how the algorithms we have

previously discussed �t within it. For all the applications which are considered in this thesis a

comprehensive review of the obtained results will be provided, along with some details on the

computational e�ciency of the proposed methods compared to alternative approaches. While

this is not always the main focus when developing a pipeline fore.g. object recognition as

in this chapter, we shall see that having an e�cient system facilitates both more extensive

experimentation, and applications in resource-limited environments.

In this chapter, we shall focus on the topic of interactions of a humanoid robot (iCub)

with its surrounding environment, a fundamental problem with applications ranging from

object grasping to human-robot interactions, and obstacle avoidance during navigation. Each

application may pose di�erent constraints on the robotic vision system. For example, when

a robot will only interact with a prede�ned set of objects, fast learning is not the primary

requirement. On the other hand, when a robot is operating in a dynamic environment (for

instance a service robot operating in a hospital, a supermarket or a domestic environment),

fast adaptation is fundamental. The concept of quickly adapting to new stimuli from the

environment is the main motivation behind the work presented in this chapter.
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6.1 Introduction

The computer vision �eld is progressing at a fast pace providing algorithms for object detection

and segmentation that are remarkably powerful. These methods are mostly based on deep

neural networks (DNNs) and are very demanding in terms of training samples and optimization

time. For this reason, they are badly suited for applications in robotics that require fast

adaptation. Because the dominant trend in computer vision is going towards larger and larger

models, comparably little e�ort is spent to propose methods that are designed to reduce training

time. To �ll this gap, in this work, we propose a comprehensive analysis in which we study

various techniques for adaptation to a novel task. In particular, we consider approaches based

on deep neural networks and on a combination of DNNs and kernel methods, focusing on the

trade-o� between training time and accuracy.

We target the problem of instance segmentation: given an input image, classify each of its

pixels as belonging to an instance of a known object or to the background. In particular, we

consider the scenario in which the robot encounters new objects during its operation and is

required to adapt its vision system to be able to segment them as well, after a learning session

that is as short as possible. We observe that this scenario o�ers opportunities to shorten the

training time, for example if we are able to perform some of the training steps (i.e., feature

extraction) already during data acquisition, and we propose a new method that is speci�cally

optimized to reduce training time without compromising performance.

Speci�cally, we propose an instance segmentation pipeline which extends and improves

previous work (Ceola, Maiettini, Pasquale, Rosasco, et al.,2021) in which a fast learning

method for instance segmentation of novel objects was proposed. One limitation of that method

was to rely on a pre-trained region proposal network. In this work, we address this by making

the region proposal learning on-line too. While this improves performance, it leads to a more

complex and longer training pipeline if addressed naively as it is done in Ceola, Maiettini,

Pasquale, Rosasco, et al. (2020). To this aim, we propose an approximated training protocol

which can be separated in two steps: 1. feature extraction and 2. fast and simultaneous training

of the proposed approaches for region proposal, object detection and mask prediction. We show

that this allows to further reduce the training time in the aforementioned robotic scenario.

In addition, we provide an extensive experimental analysis to investigate the training

time/accuracy trade-o� on two public datasets ( i.e., YCB-Video (Xiang et al., 2018) and

HO-3D (Hampali et al., 2020)). In particular, we show that our method is much more accurate

than Ceola, Maiettini, Pasquale, Rosasco, et al. (2021), while requiring a comparable training

time. Moreover, the proposed method allows to obtain accuracy similar to conventional

�ne-tuning approaches, while being trained much faster.

In summary, the contributions of this work are:
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ˆ We propose a new pipeline and training protocol for instance based object segmentation,

which is speci�cally designed for fast, on-line training.

ˆ We benchmark the obtained results on two robotics datasets, namely YCB-Video (Xiang

et al., 2018) and HO-3D (Hampali et al., 2020).

ˆ We provide an extensive study to compare our pipeline against conventional �ne-tuning

techniques, with an in-depth analysis of the trade-o� between the required training time

and the achieved accuracy.

ˆ We deploy and demonstrate the proposed training pipeline on the iCub (Metta, Natale,

et al., 2010) humanoid robot, adapting the algorithm for an incremental setting where

target classes are not known a-priori.

This paper is organized as follows. In Section6.2, we review state-of-the-art approaches for

instance segmentation, focusing on methods designed for robotics. Then, in Section6.3, we

describe the proposed training pipeline for fast learning of instance segmentation. In Section6.4,

we report on the experimental setup used to validate our approach. We then benchmark our

approach on two benchmark datasets in Section6.5. In Section 6.6, we speci�cally quantify

the bene�t of the adaptation of the region proposal. In Section 6.7, we simulate the robotic

scenario in which data come into stream and we discuss various performance trade-o�s. Then,

in Section 6.8, we describe an incremental version of the proposed pipeline and we deploy it on

a robotic platform. Finally, in Section 6.9 we draw conclusions.

6.2 Related Work

In this section, we provide an overview of state-of-the-art methods for instance segmentation

(Section 6.2.1), focusing on their application in robotics (Section 6.2.2).

6.2.1 Instance Segmentation

Approaches proposed in the literature to address instance segmentation can be classi�ed in the

following three groups.

Detection-based instance segmentation. Methods in this category extend approaches for

object detection, by adding a branch for mask prediction within the bounding boxes proposed

by the detector. They can be grouped in(i) multi-stage (also known asregion-based) and (ii)

one-stage. Methods from the �rst group rely on detectors that �rst predict a set of candidate

regions and then classify and re�ne each of them (e.g. Faster R-CNN (S. Ren et al., 2015) or

R-FCN (J. Dai, Y. Li, et al., 2016)). One-stagedetectors, instead, solve the object detection

task in one forward pass of the network. Di�erently from multi-stage approaches, they do not
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perform any per-region operation, likee.g. per-region feature extraction and classi�cation (see

for instance, E�cientDet (Tan et al., 2020) and YOLOv3 (Redmon et al., 2018)).

The representative method among themulti-stage approaches is Mask R-CNN (He, Gkioxari,

et al., 2017) that builds on top of the detection method Faster R-CNN (S. Ren et al., 2015),

by adding a branch for mask prediction (segmentation branch) in parallel to the one for

bounding box classi�cation and re�nement (detection branch). In Mask R-CNN, input images

are initially processed by a convolutional backbone to extract a feature map. This is then

used by the Region Proposal Network (RPN) to propose a set ofRegions of Interest (RoIs)

that are candidate to contain an object, by associating a class-agnostic objectness score to

each region. Then, theRoI Align layer associates a convolutional feature map to eachRoI by

warping and cropping the output of the backbone. These features are �nally used forRoIs

classi�cation, re�nement and, subsequently, for mask prediction. In the literature, many other

state-of-the-art multi-stage approaches for instance segmentation build on top of Mask R-CNN,

like Mask Scoring R-CNN (Huang et al., 2019) or PANet (S. Liu et al., 2018).

YOLACT (Bolya et al., 2019) and BlendMask (H. Chen et al., 2020) are representative of

one-stagemethods. YOLACT extends a backbone RetinaNet-like (Lin, Goyal, et al., 2017)

detector with a segmentation branch. BlendMask, instead, extends FCOS (Tian et al.,2019) for

mask predictions. An alternative paradigm for instance segmentation based on theone-stage

detector CenterNet (Zhou et al., 2019) is Deep Snake (S. Peng, Jiang, et al.,2020). Di�erently

from the methods mentioned above that predict per-pixel con�dence within the proposed

bounding boxes, it exploits the circular convolution (S. Peng, Jiang, et al.,2020) to predict an

o�set for each mask vertex point, starting from an initial coarse contour.

Labeling pixels followed by clustering. Approaches in this group build on methods for

semantic segmentation, which is the task of classifying each pixel of an image according to

its category (being thus agnostic to di�erent object instances). Building on these methods,

approaches in the literature separate the di�erent instances by clustering the predicted pixels.

As an example, SSAP (N. Gao et al.,2019) uses the so-calleda�nity pyramid in parallel

with a branch for semantic segmentation to predict the probability that two pixels belong to

the same instance in a hierarchical manner. This is done with the aim of grouping pixels of

the same instance. InstanceCut (Kirillov et al., 2017), instead, exploits an instance-agnostic

segmentation and an instance-aware edge predictor to compute the instance-aware segmentation

of an image. Finally, the method proposed in Bai et al. (2017) learns the watershed transform

with a convolutional neural network, the Deep Watershed Transform, given an image and a

semantic segmentation. This is done to predict an energy map of the image, where the energy

basins represent the object instances. This information is then used, with a cut at a single

energy level, to produce connected components corresponding to di�erent object instances.

Dense sliding window. These approaches simultaneously predict mask instances and their

class-agnostic or class-speci�c scores. For instance, DeepMask (Pinheiro et al.,2016) predicts
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in parallel a class-agnostic mask and an objectness score for each patch of an input image with

a shallow convolutional neural network. InstanceFCN (J. Dai, He, et al., 2016), alternatively,

predicts an instance sensitive score map for each window of the considered input image.

This method exploits local coherence for class-agnostic masks prediction, and, as DeepMask,

per-window class-agnostic scores. Similarly, TensorMask (X. Chen et al.,2019) predicts class-

agnostic instance masks, but it leverages on the proposed mask representation as a 4D tensor

to preserve the spatial information among pixels. Moreover, the classi�cation branch of the

proposed approach outputs a class-speci�c score, thus improving the class-agnostic predictions

provided by DeepMask and InstanceFCN.

6.2.2 Instance Segmentation in Robotics

The instance segmentation task plays a central role in robotics, not only for providing an

accurate 2D scene description for a robot, but also to support other tasks like 6D object pose

estimation (Xiang et al., 2018) or computation of grasp candidates (Shu et al.,2018). In

the literature, the problem is tackled in di�erent ways, depending on the target application.

In Wada et al. (2019) and A. Li et al. ( 2020) the problem is addressed in cluttered scenarios,

while S. Li et al. (2020) and Danielczuk et al. (2019) propose adopting synthetic data (both

images and depth information) for training. In this work, instead, we focus on learning to

segment previously unseen objects. In the following paragraphs, we will cover the main literature

on this topic.

Some works propose to generalize to unseen objects in a class-agnostic fashion. However,

these methods either focus on particular environments, such as tabletop settings, as in Xie et al.

(2020) and Xie et al. (2021), or require some post-processing (Kuo et al.,2019) which may be

unfeasible during the robot operation.

Approaches as the ones proposed in Pathak et al. (2018) and Eitel et al. ( 2019) learn

to segment new object instances by interacting with them. Nevertheless, similarly to the

class-agnostic approaches, they are constrained to tabletop settings.

The latest literature on Video Object Segmentationprovides some methods for learning to

segment a set of previously unseen objects in videos. They deal with the problem either in

a semi-supervised way (P. Zhang et al.,2020), leveraging on the ground-truth masks of the

objects in the �rst frame of the video, or in an unsupervised fashion (S. Garg et al.,2020).

They allow to learn to segment new object instances in a shorter time than that required by

the fully supervised approaches presented in Section6.2.1. They typically rely on pretraining

a network for instance segmentation and on the subsequent �ne-tuning on the target video

sequence frames (Voigtlaender et al.,2017). Some of these approaches have been targeted for

robotic scenarios. For instance, the method in Siam et al. (2019) proposes to learn to segment

novel objects in a Human-Robot Interaction (HRI) application, leveraging only on objects
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motion cues. Nevertheless, these approaches are known to su�er from changes of the objects

appearance through the video sequence and error drifts (P. Zhang et al.,2020).

We instead focus on learning to segment novel objects in a class-speci�c fashion, keeping

the performance provided by the state-of-the-art but reducing the required training time. All

the approaches mentioned in Section6.2.1 rely on convolutional neural networks that require to

be trained end-to-end via backpropagation and stochastic gradient descent. Despite providing

impressive performance, they require long training time and large amounts of labeled images to

be optimized. These constraints make the adoption of such approaches in robotics di�cult,

especially for robots operating in unconstrained environments, that require fast adaptation to

new objects.

Incremental learning aims at learning new object instances without degrading performance

on the previously known classes. Nevertheless, these approaches rarely focus on speeding-

up the training of the models, which may be crucial in robotic applications. Moreover, the

current literature in this �eld mainly focuses on object recognition (Camoriano, Pasquale,

et al., 2017; Maltoni et al., 2019), object detection (Shmelkov et al., 2017; Perez-Rua et al.,

2020) or semantic segmentation problems (Michieli et al.,2019), while we target an instance

segmentation application. As we show in Section6.8, we deploy the proposed pipeline on the

iCub humanoid robot, adapting it to an incremental setting, where the target classes are not

known a-priori.

In this work, we propose a pipeline and a training protocol for instance segmentation

which is speci�cally designed to reduce training time, while preserving performance as much as

possible. This approach is based on Mask R-CNN (He, Gkioxari, et al.,2017), in which the �nal

layers of the RPN and of the detection and segmentation branches have been replaced with

�shallow� classi�ers based on a fast kernel-based method optimized for large scale problems (Rudi,

Carratino, et al., 2017; Meanti, Carratino, Rosasco, et al.,2020). The backbone of the network

is trained o�-line, while the kernel-based classi�ers are adapted on-line. In this paper, we build

on top of Ceola, Maiettini, Pasquale, Rosasco, et al. (2021), in that we include the adaptation

of the region proposal network and a novel training protocol which allows to further reduce the

training time. This makes the pipeline suitable for on-line implementation.

6.3 Methods

The proposed hybrid pipeline allows to quickly learn to predict segmentation masks of previously

unseen objects (TARGET-TASK). We rely on a pretrained convolutional neural network, which

was trained using a large number of samples coming from a di�erent task (FEATURE-TASK).

This larger network is used for feature extraction, on top of which we developed three modules

for region proposal, object detection and mask prediction which can be rapidly adapted on the

new task. This allows to achieve on-line adaptation on novel objects and visual scenarios.
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Figure 6.1 The Feature Extraction Module is composed of Mask R-CNN's �rst layers trained
o�-line on the FEATURE-TASK. The three sets of features for (i) region proposal (Fr ), (ii)
object detection (Fd) and (iii) instance segmentation (Fs) are fed to (i) the On-line RPN, (ii)
the On-line Detection Module and (iii) the On-line Segmentation Module. At inference time,
we substitute the �nal layers of the Mask R-CNN's RPN with the On-line RPN trained on the
TARGET-TASK and, as in Mask R-CNN, the output of the On-line Detection Module is fed as
input to the RoI Align to compute the objects masks within the proposed bounding boxes.

The proposed pipeline is composed of four modules, which are depicted in Figure6.1. They

are:

ˆ Feature Extraction Module. This consists of the �rst layers of Mask R-CNN, which has

been pretrained o�-line on the FEATURE-TASK. We use it to extract the convolutional

features to train the three on-line modules on the TARGET-TASK. In particular, we use

it to extract the features Fr , Fd and Fs from the penultimate layers of the RPN, and of

the detection and segmentation branches, respectively.

ˆ On-line RPN. This replaces the last layers of the Mask R-CNN's RPN to predict a set

of regions that likely contain an object in an image (often called regions of interest or

RoIs), given a feature mapFr . We describe the training procedure in Section6.3.1.

ˆ On-line Detection Module. This is used to classify featuresFd corresponding to

regions proposed byOn-line RPN into their respective object types (e.g. bananavs. mug).

See Section6.3.1 for the description of the training procedure.

ˆ On-line Segmentation Module. Given a feature map Fs, this last module predicts

the masks of objects within the RoIs provided by theOn-line RPN. It can be trained in

parallel to the On-line Detection Module, as it doesn't rely on knowledge of the object

classes. We describe the training procedure in Section6.3.3.
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Figure 6.2 On-line RPN. Given the feature mapFr , this is unrolled into h� w tensors of features
of sizef (Fr Unrolled). A subset of these features is chosen to train a Falkon classi�er and four
RLS regressors for each anchor.

In the three on-line modules described above, we use the Falkon algorithm for classi�cation.

This is a kernel-based method optimized for large-scale problems (Rudi, Carratino, et al.,2017).

In particular, we use the implementation available in Meanti, Carratino, Rosasco, et al. (2020).

6.3.1 Bounding Box Learning

Given as input the convolutional features computed by Mask R-CNN's backbone, we �rst

process them with a convolutional layer to reduce feature dimensionality. The output of this

layer consists ofh � w features of sizef representing a whole image (the feature mapFr ). Then

at eachi; j location on this 2-dimensional grid we shall proposek boxes (oranchors S. Ren et al.,

2015) of prede�ned sizes and aspect ratios to be the RoIs associated with each pixel. Since this

produces a large number of spurious regions by design, the RPN's goal is to(i) classify each

region as eitherobject or background, and (ii) re�ne the preset boxes to more accurately bound

any object they might contain. Mask R-CNN's RPN uses convolutional layers for both tasks.

In contrast, for the �rst task we adopt k Falkon models trained as binary classi�ers on top of

the features Fr . The training samples are naturally imbalanced with many more negative (=

background) than positive (= object or foreground) samples (Lin, Goyal, et al., 2017), so we

adopt the mini-bootstrap strategy proposed in Maiettini et al., 2018; Maiettini et al., 2019. As

positive examples we adopt those prede�ned bounding boxes whoseIntersection over Union

(IoU: a measure of overlap between bounding boxes) with a ground-truth bounding box is

greater than 0:7, as negative examples instead we take those bounding boxes whose overlap

with any ground-truth sample is less than 0:31. We formulate the second task as continuous

valued regression with 4 outputs corresponding to relative o�sets for the four sides of each

1For the On-line RPN , we set the positive and negative thresholds for the classi�ers as in Mask R-CNN's
RPN He, Gkioxari, et al., 2017.
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Figure 6.3 On-line Segmentation. Given the feature mapFs associated to aRoI of classi, this
is unrolled into s� s tensors of features of sizef (Fs Unrolled) from which positive and negative
features are sampled to train thei th Falkon per-pixel classi�er. Note that this procedure is
performed for eachRoI of the N classes.

bounding box. Correspondingly we train 4k linear regression models (Girshick et al.,2014),

using only the proposed boxes with an IoU greater than0:6 with ground-truth samples. The

pipeline is depicted in Figure 6.2.

6.3.2 On-line object detection

For training the On-line Detection Module, we consider features produced by the penultimate

layer of the Mask R-CNN's detection branch (Fd), associated to each RoI proposed during the

region proposal step. Considering a TARGET-TASK with N classes, we will use the Falkon

algorithm to train N binary classi�ers which learn how to distinguish the n-th class from

the rest. For the n-th classi�er, we take as positive samples those RoIs whose IoU with a

ground-truth box belonging to class n is greater than 0:62. As negative samples we consider

RoIs with IoU with any ground-truth box from class n less than 0:33.

6.3.3 On-line Segmentation

In Mask R-CNN the segmentation branch is a two-layer fully convolutional network (FCN)

that takes as input a feature map of sizes� s� f associated to each RoI. The �rst layer acts

another feature-extraction layer, and is preserved in our architecture. The second layer is a

convolutional layer with N output channels and the same spatial resolution as the input RoI

which provides the model's con�dence that any given pixel corresponds to then-th class. We

replace this layer with N Falkon binary classi�ers taking f -dimensional features corresponding

to each pixel (see Figure6.3) as input and outputting the probability that such pixel belongs

to a speci�c class. Here we consider as positive samples the features associated with pixels in

2We consider as positive samples for the classi�ers in the On-line Detection Module the training features for
region re�nement as in He, Gkioxari, et al., 2017.

3For the classi�ers in the On-line Detection Module we de�ne the negative samples as in Girshick et al., 2014.
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Figure 6.4 Ours training protocol. We rely on the feature extraction layers of Mask R-CNN
pretrained on the FEATURE-TASK to simultaneously extract Fr , Fd and Fs. We then use
these features to train the three on-line modules on the TARGET-TASK. The values on the
arrows correspond to the training steps in Section6.3.4.

the ground-truth masks for each class, and as negative samples the features corresponding to

the background pixels. to speed-up the training procedure, we randomly subsample both the

positive and the negative features by a factorr . According to the analysis provided in Ceola,

Maiettini, Pasquale, Rosasco, et al. (2021), we set r to 0:3.

6.3.4 Training Protocol

In this work, we propose a training protocol that allows to quickly update the On-line RPN, the

On-line Detection Module and the On-line Segmentation Module. The proposed method (referred

to as Ours ) starts with the weights of Mask R-CNN pretrained on the FEATURE-TASK and

adapts the on-line modules on the TARGET-TASK, as depicted in Figure 6.4:

1. Feature extraction. This is done with a forward pass of the pretrained Mask R-CNN

feature extractor (in green) to compute Fr , Fd and Fs (depicted in blue).

2. On-line training. The set of featuresFr , Fd and Fs are used to train the three on-line

modules represented in yellow in Figure6.4 on the TARGET-TASK.

Note that, in order to train the on-line modules in parallel, the training features fed to

the On-line Detection Module must be those proposed by Mask R-CNN's RPN pretrained on

FEATURE-TASK. These are di�erent and sub-optimal compared the ones proposed by the

On-line RPN which has been adapted on TARGET-TASK. In Section 6.6.2 we perform an

ablation experiment comparing this training procedure againstserial training of the On-line

RPN followed by the detection module, showing that the price to pay for e�cient training is

small in terms of accuracy.

At inference time, features fed to theOn-line Detection Module and to the On-line Segmen-

tation Module are those associated to the regions proposed by theOn-line RPN trained on the

TARGET-TASK, as depicted in Figure 6.1.

6.4 Experimental Setup

In this section, we report on the experimental settings that we employ for validating the

proposed approach.
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O�-line Experiments For our experiments, we compare the proposed method,Ours , with

two Mask R-CNN (He, Gkioxari, et al., 2017) baselines. In particular, we consider:

ˆ Mask R-CNN (output layers) : starting from the Mask R-CNN weights pre-trained

on FEATURE-TASK, we �ne-tune the output layers of the RPN and of the detection

and segmentation branches on the TARGET-TASK, freezing all the other weights of the

network.

ˆ Mask R-CNN (full) : we use the weights of the pretrained Mask R-CNN as a warm-

restart to train Mask R-CNN on the TARGET-TASK.

Speci�cally we rely on Mask R-CNN (He, Gkioxari, et al., 2017) with ResNet-50 (He, X. Zhang,

et al., 2016) as backbone for the feature extraction ofOurs and for the baselines.

In all cases, we choose hyper-parameters providing the highest performance on a validation

set. Speci�cally, for Ours we cross-validate the length-scale of Falkon's Gaussian kernel ( ) and

regularization parameter (� ) for each module in which kernel methods were used. Regarding

the baselines, we trainMask R-CNN (output layers) and Mask R-CNN (full) for the

number of epochs that provides the highest segmentation accuracy on the validation set. For

Ours , we set the number of Nyström centersM of the Falkon classi�ers composing theOn-line

RPN, the On-line Detection Module and the On-line Segmentation Moduleto 1000, 1000and

500, respectively. Moreover, to train both the On-line RPN and the On-line Detection Module,

we set to 2000 the batch-size (BS) considered in theMinibootstrap.

Evaluation metrics. We consider themean Average Precision (mAP) as de�ned in Ever-

ingham et al. (2010) for both object detection and segmentation. Speci�cally, the accuracy

of the predicted bounding boxes will be referred to asmAP bbox(%) and the accuracy of

the mask instances asmAP segm(%) . For each of them, we consider as positive matches

the bounding boxes and the masks whose IoU with the ground-truths is greater or equal to a

threshold. In our experiments we consider two di�erent thresholds to evaluate di�erent levels

of accuracy, namely,50 % (mAP50 ) and 70 % (mAP70 ). We also evaluate the training time

required for each method4. For the Mask R-CNN baselines, training time is the time needed for

their optimization via stochastic gradient descent. For Ours instead, except where di�erently

speci�ed, it is the time necessary for extracting the features and training the on-line modules.

For each experiment we run three trials and report average and standard deviation of the

accuracy and average training time.

Datasets We used MS COCO (Lin, Maire, et al., 2014) as FEATURE-TASK and YCB-

Video (Xiang et al., 2018) and HO-3D (Hampali et al., 2020) as TARGET-TASKs to validate

4All the o�-line experiments have been performed on a machine equipped with Intel(R) Xeon(R) W-2295
CPU @ 3.00GHz, and a single NVIDIA Quadro RTX 6000.
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our approach. We opted to validate our system on these datasets, which are composed of

streams of frames in tabletop and hand-held settings, to be close to our target application.

These datasets are usually considered for the task of 6D object pose estimation, however they

are annotated also with object masks. Speci�cally:

ˆ MS COCO (Lin, Maire, et al., 2014) is a general-purpose dataset which contains 80

objects categories for object detection and segmentation.

ˆ YCB-Video (Xiang et al., 2018) is a dataset for 6D pose estimation in which 21 objects

from the YCB (Calli et al., 2015) dataset are arranged in cluttered tabletop scenarios,

therefore presenting strong occlusions. It is composed of video sequences where the

tabletop scenes are recorded under di�erent viewpoints. We use as training images a set

of 11 320images, obtained by extracting one image every ten from the total 80 training

video sequences. As test set, instead, we consider the2949keyframe (Xiang et al., 2018)

images chosen from the remaining 12 sequences. For hyper-parameters cross-validation,

we randomly select a subset of1000 images from the 12 test sequences, excluding the

keyframe set.

ˆ HO-3D (Hampali et al., 2020) is a dataset for hand-object pose estimation, in which

objects are a subset of the ones inYCB-Video . It is composed of video sequences in

which a moving hand-held object is shown to a �xed camera. For choosing the training

and test sets, we split the available annotated sequences in HO-3D5 such that we gather

one and at most four sequences for testing and training, respectively. In particular, we

use20 156images as training set, which result from the selection of one every two images

from 34 sequences. Instead, we consider as test set2020 images chosen one every �ve

frames taken from other 9 sequences. For validation we consider2160frames chosen one

every �ve images, from a subset of 9 sequences taken from the training set.

Robotic Setup We deploy the proposed pipeline for on-line instance segmentation on the

humanoid robot iCub6 (Metta, Natale, et al., 2010). It is equipped with a Intel(R) RealSense

D415 on a headset for the acquisition of RGB images and depth information. We rely on

the YARP (Metta, Fitzpatrick, et al., 2006) middleware for the implementation and the

communication between the di�erent modules (see Section6.8). With the exception of the

proposed one, we rely on publicly available modules7. We set all training hyper-parameters as

described in Section6.4.
5Note that in HO-3D the annotations for instance segmentation are not provided for the test set. Therefore,

we extract training and test sequences from the original HO-3D training set.
6We run the module with the proposed method on a machine equipped with Intel(R) Core(TM) i7-9750H

CPU @ 2.60GHz, and a single NVIDIA RTX 2080 Ti.
7https://github.com/robotology

https://github.com/robotology


6.5 Results 118

Table 6.1 Benchmark on the YCB-Video dataset. We compare the proposed approachOurs to
the baselineMask R-CNN (output layers) and to the upper bound Mask R-CNN (full) .

Method
mAP50
bbox(%)

mAP50
segm(%)

mAP70
bbox(%)

mAP70
segm(%)

train time

Mask R-CNN
(full)

89:66� 0:47 91:26� 0:56 84:67� 0:81 80:26� 0:59 96 min

Mask R-CNN
(output layers)

84:51� 0:40 81:70� 0:17 75:81� 0:30 70:46� 0:24 177 min

Ours 83:66� 0:84 83:06� 0:92 72:97� 1:02 68:11� 0:29 14 min

Table 6.2 Benchmark on the HO-3D dataset. We report performance obtained withOurs and
compare it to Mask R-CNN (output layers) and Mask R-CNN (full) .

Method
mAP50
bbox(%)

mAP50
segm(%)

mAP70
bbox(%)

mAP70
segm(%)

train time

Mask R-CNN
(full)

92:21� 0:88 90:70� 0:17 86:73� 0:71 77:25� 0:62 39 min

Mask R-CNN
(output layers)

88:05� 0:32 86:11� 0:29 74:75� 0:19 65:04� 0:62 111 min

Ours 83:63� 1:64 84:50� 1:63 63:33� 1:65 61:54� 0:33 17 min

6.5 Results

In this section, we benchmark the proposed approach on YCB-Video (Section6.5.1) and HO-3D

(Section 6.5.2).

6.5.1 Benchmark on YCB-Video

We consider the 21 objects from YCB-Video as TARGET-TASK and compare the performance

of Ours against the baselineMask R-CNN (output layers) . We also report the performance

of Mask R-CNN (full) , which can be considered as an upper-bound because, di�erently

from the proposed method, it updates both the feature extraction layers and the output layers

(i.e. the backbone, the RPN, the detection and the segmentation branches). InOurs , we

empirically set the number of batches in the Minibootstrap to 10, which achieves the best

time/accuracy trade-o� (see Figure 6.6 for details).

Results in Table 6.1 show that Ours achieves similar performance asMask R-CNN

(output layers) in a fraction ( � 12:8� smaller) of the training time. On the other hand, Ours

is not as accurate asMask R-CNN (full) (� 9:0% less precise if we consider themAP50

segm(%) ) metric, but is trained � 6:9� faster.
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Table 6.3 Comparison betweenOurs , Mask R-CNN (full) and O-OS trained on YCB-Video.
For O-OS , we reproduce the experiment of Tab. I in Ceola, Maiettini, Pasquale, Rosasco,
et al. (2021), but run the experiment three times (reporting mean and standard deviation) on
the same hardware used for this work and setting training hyperparameters as described in
Section 6.6.1.

Method
mAP50
bbox(%)

mAP50
segm(%)

mAP70
bbox(%)

mAP70
segm(%)

train time

Mask R-CNN
(full)

89:66� 0:47 91:26� 0:56 84:67� 0:81 80:26� 0:59 96 min

O-OS 76:15� 0:31 74:44� 0:11 68:06� 0:34 63:90� 0:36 11 min
Ours 83:66� 0:84 83:06� 0:92 72:97� 1:02 68:11� 0:29 14 min

Table 6.4 We report on the performance obtained on HO-3D withOurs and we compare it to
Mask R-CNN (full) and O-OS for the analysis in Section6.6.1.

Method
mAP50
bbox(%)

mAP50
segm(%)

mAP70
bbox(%)

mAP70
segm(%)

train time

Mask R-CNN
(full)

92:21� 0:88 90:70� 0:17 86:73� 0:71 77:25� 0:62 39 min

O-OS 75:27� 0:26 77:42� 0:45 57:89� 0:24 57:86� 0:21 14 min
Ours 83:63� 1:64 84:50� 1:63 63:33� 1:65 61:54� 0:33 17 min

6.5.2 Benchmark on HO-3D

On the HO-3D dataset, we empirically set the number of minibootstrap batches of theOn-line

RPN and of the On-line Detection Module in Ours to 12. Obtained results are in Table6.2.

Similarly to the experiment on YCB-Video, Ours can be trained � 2:3� and � 6:6�

faster than Mask R-CNN (full) and Mask R-CNN (output layers) , respectively. Models

obtained with Ours are slightly less precise than those provided byMask R-CNN (output

layers) for the task of instance segmentation, while they are� 15:3% less accurate if we

consider themAP70 bbox(%) . We will show in Section 6.6.2 that this gap can be recovered

with a di�erent training protocol. However, Ours achieves the best training time with an

accuracy that is close to the state-of-the-art.

6.6 Fast Region Proposal Adaptation

In this section, we investigate the impact of region proposal adaptation on the overall perfor-

mance. In particular, in Section 6.6.1, we show that, with respect to Ceola, Maiettini, Pasquale,

Rosasco, et al. (2021), updating the RPN provides a signi�cant gain in accuracy, maintaining

a comparable training time. Then, in Section 6.6.2 we analyze the speed/accuracy trade-o�

achieved with the proposed approximated training protocol.
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Figure 6.5 Ours serial training protocol. We rely on the feature extraction layers of Mask
R-CNN pre-trained on the FEATURE-TASK to extract Fr and we train the On-line RPN on
the TARGET-TASK. Then, we rely on the feature extraction layers of Mask R-CNN and on
the On-line RPN trained on the TARGET-TASK to extract Fd and Fs. Finally, we train the
On-line Detection Module and the On-line Segmentation Moduleon the TARGET-TASK. The
values on the arrows correspond to the training steps in Section6.6.2.

6.6.1 Is Region Proposal Adaptation Key to Performance?

Adaptation of the region proposal algorithm on a new task provides a signi�cant gain in

accuracy for object detection on the new task itself (in this paper we report some evidence

while additional experiments can be found in Ceola, Maiettini, Pasquale, Rosasco, et al. (2020)).

In particular it is especially e�ective when FEATURE-TASK and TARGET-TASK present a

signi�cant domain shift (which is a common scenario in robotics). In this section, we show that

better region proposals also improve downstream mask estimation.

To test performance under domain shift we consider as FEATURE-TASK the categorization

task in MS COCO and as TARGET-TASKs the identi�cation tasks of the YCB-Video and

HO-3D datasets, which depict tabletop and in-hand scenarios respectively.

Once again we considerMask R-CNN (full) as the upper bound of achievable performance.

We compareOurs with the method proposed in Ceola, Maiettini, Pasquale, Rosasco, et al.

(2021) (Sec. III), namely O-OS 8, in which the RPN remains constant during training on the

TARGET-TASK. For a fair comparison, we set O-OS hyperparameters according to Section6.4.

Results in Tables 6.3 and 6.4 show that, as expected, there is an accuracy gap between

Mask R-CNN (full) and the other considered methods. However, notably, the adaptation

of the region proposal on the TARGET-TASK in Ours allows to signi�cantly reduce the

accuracy gap betweenMask R-CNN (full) and O-OS . Moreover, Ours outperforms the

accuracy of O-OS with a comparable training time. For instance, in the HO-3D experiment,

the segmentationmAP50 obtained with Ours is, on average,� 7:1 points greater than O-OS ,

with a di�erence in training time of only 3 m 20 s.

6.6.2 Approximated On-line Training: Speed/Accuracy Trade-o�

To evaluate the impact of training the On-line Detection module on RoIs proposed by the

non-adapted model, we compare against a di�erent training protocol, referred to asOurs

serial , where the On-line RPN is trained �rst and the other modules are trained later on top

of its proposals. This should allow to train the detection module with better RoIs, improving

8 In Ceola, Maiettini, Pasquale, Rosasco, et al. (2021), O-OS was referred to asOurs .
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Table 6.5 Comparison between the proposed approachOurs , the baselineMask R-CNN
(output layers) and Ours serial trained on YCB-Video.

Method
mAP50
bbox(%)

mAP50
segm(%)

mAP70
bbox(%)

mAP70
segm(%)

train time

Mask R-CNN
(full)

84:51� 0:40 81:70� 0:17 75:81� 0:30 70:46� 0:24 177 min

Ours serial 83:97� 0:59 83:00� 0:78 75:06� 0:88 69:12� 0:56 25 min
Ours 83:66� 0:84 83:06� 0:92 72:97� 1:02 68:11� 0:29 14 min

the overall pipeline performance. In more detail,Ours serial is composed of the four steps

depicted in Figure 6.5:

1. Feature extraction for region proposal. This is done to extractFr (see Section6.3) on the

images of the TARGET-TASK.

2. These features are then used to train theOn-line RPN on the TARGET-TASK, as

described in Section6.3.1.

3. The new On-line RPN is used to extract more precise regions and the corresponding

features for detection and segmentation (respectively,Fd and Fs).

4. Fd and Fs are used to train the On-line Detection Module and the On-line Segmentation

Module on the TARGET-TASK, as described in Sections 6.3.1 and 6.3.3 respectively.

We evaluate Ours and Ours serial in the same setting used for previous experiments

(Sections 6.5 and 6.6.1), and using the same procedure for deciding hyperparameters. The

number of minibootstrap iterations for Ours serial is set to 8 and 7 in the experiments on

YCB-Video and HO-3D, respectively.

We report results in Tables 6.5 and 6.6. Accuracy of Ours in the YCB-Video experiment is

comparable to the one ofOurs Serial , demonstrating that the approximated training procedure

substantially does not a�ect performance in this case. Instead, in the HO-3D experiment,Ours

is slightly less precise thanOurs serial for the task of instance segmentation, while being

� 11:6% less accurate if we consider themAP70 bbox(%) . However, Ours is trained � 1:8�

and � 2:2� faster than Ours serial on YCB-Video and HO-3D, respectively. Nonetheless

Ours serial achieves comparable performance toMask R-CNN (output layers) with much

shorter training time. However, the approximate training protocol proposed in this paper allows

further optimization which is discussed in the next section.
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Table 6.6 We report on the performance obtained on HO-3D withOurs and we compare it to
Mask R-CNN (output layers) and Ours serial .

Method
mAP50
bbox(%)

mAP50
segm(%)

mAP70
bbox(%)

mAP70
segm(%)

train time

Mask R-CNN
(output layers)

88:05� 0:32 86:11� 0:29 74:75� 0:19 65:04� 0:62 111 min

Ours serial 88:70� 0:43 87:87� 0:37 71:65� 0:93 64:76� 0:70 37 min
Ours 83:63� 1:64 84:50� 1:63 63:33� 1:65 61:54� 0:33 17 min

6.7 Stream-based Instance Segmentation

We now consider a robotic application, in which the robot is tasked to learn new objects on-line,

while automatically acquiring training samples. In this case, training data arrive continuously

in a stream, and the robot must either use them immediately or store them for later use.

We investigate to what extent it is possible to reduce the training time and how this a�ects

segmentation performance.

Because data acquisition takes a considerable amount of time, we exploit the opportunity

to perform some of the processing required for training in parallel. In the proposed pipeline,

for example, the training protocol Ours has been designed to separate feature extraction from

training of the kernel-based components. Then the expensive feature extraction step can be

performed while images and ground-truth labels are being received by the robot. In this section,

we investigate to what extent it is possible to exploit this parallelization with the conventional

Mask R-CNN architecture. We compare the proposedOurs with three di�erent Mask R-CNN

baselines:Mask R-CNN (full) and two variations of Mask R-CNN (output layers) as

presented in Section6.4.

Because images arrive in a stream, similar views of the same objects are represented

in adjacent frames. This requires storing all images and waiting until the end of the data

acquisition process, before starting the training process. We hence consider an additional

baseline,Mask R-CNN (store features) , in which, similarly to Mask R-CNN (output

layers) , we �ne-tune the output layers of the RPN and of the detection and segmentation

branches. In this case, however, we compute and store the backbone feature maps for each input

image during data acquisition to save time. This can be done because, during the �ne-tuning,

the weights of the backbone remain unaltered.

Both Ours and Mask R-CNN (store features) can perform the feature extraction while

receiving the stream of images: this allows to further reduce the training time. This is possible

because the frame rate for feature extraction in both cases is greater than the frame rate of

the stream of incoming data. For instance, with Ours , we extract features at 14:7 FPS for

YCB-Video while the stream of images that is used for training has a frame rate of 3 FPS
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Figure 6.6 Detection and segmentationmAPs for increasing number of minibootstrap iterations
for Ours and for increasing training time of the Mask R-CNN baselines, considering YCB-Video
as TARGET-TASK. The plots show the average and the standard deviation of the accuracy
obtained over three runs.

(note that the dataset has been collected at 30 FPS, but we use one image over ten to avoid

data redundancy). This allows to completely absorb the time for feature extraction in the time

for data acquisition for both approaches. Since the time required for the data acquisition is

the same for the two compared methods, we remove it from the training time computation,

therefore comparing only the processing time that follows this phase. This represents the time

to wait for a model to be ready in the target robotic application. As explained above, the time

required for feature extraction cannot be removed in the case ofMask R-CNN (full) and

Mask R-CNN (output layers) .

In Figures 6.6 and 6.7 we plot accuracy as a function of training time on the YCB-Video

and HO-3D datasets. Note that for Ours we increase the number of minibootstrap iterations

to increase total training time, while for methods based on Mask R-CNN we can simply train

for more epochs. At extremely short training times, Ours achieves the best accuracy. For

instance in the YCB-Video experiment, considering a training time of � 20 s, (obtained by

setting the minimum number of minibootstrap iterations to 2), Ours achieves amAP for

instance segmentation of(i) � 82:2 and (ii) � 67:9 for the IoU thresholds set to (i) 50% and

(ii) 70%. With a similar optimization time, Mask R-CNN (full) (the best among baselines)

reaches amAP of (i) � 53:9 and (ii) � 39:8 for the IoU thresholds set to (i) 50% and(ii)

70%.
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Figure 6.7 We consider HO-3D as TARGET-TASK and we report the average and the standard
deviation of the mAPs over three training sessions with the same parameters for increasing
number of Minibootstrap iterations for Ours , and for increasing training time of Mask R-CNN
(full) , Mask R-CNN (output layers) and Mask R-CNN (store features) .
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Moreover, the plots show that, for all the experiments,Mask R-CNN (output layers)

achieves the worst performance, whileMask R-CNN (store features) has a steeper slope,

since it has precomputed all features. On the contrary,Mask R-CNN (full) presents a

better trend than Mask R-CNN (output layers) and Mask R-CNN (store features) .

This might be due to the following reasons. Firstly, Mask R-CNN (full) optimizes more

parameters of the network. While requiring more time for each training step, this allows to

speed-up the optimization process, requiring less iterations on the dataset to achieve comparable

accuracy. Secondly,Mask R-CNN (full) performs a warm restart of the the output layers of

the RPN, while in the other baselines they are re-initialized from scratch. However, to achieve

a similar performance to Ours , Mask R-CNN (full) requires � 75 s for the YCB-Video

experiment and � 50 s on HO-3D.

Finally, as it can be noticed, the standard deviations of most of the Mask R-CNN baselines

are greater than the ones ofOurs . This derives from the fact that while Ours samples features

from all the training images, the Mask R-CNN baselines are optimized only on a subset of them

due to time constraints (e.g. in the YCB-Video experiment Mask R-CNN (full) processes

images at � 8 FPS when trained for 1 min). Reducing the number of training images increases

the variability of the results.

6.8 Robotics Application

In this section, we describe the pipeline based on the proposed method that we developed

for the iCub (Metta, Natale, et al., 2010) robot. We set our application in a teacher-learner

scenario, in which the robot learns to segment novel objects shown by a human. The proposed

application �ts in a similar setting to HO-3D showing the e�ectiveness of the approach to learn

new objects also in presence of domain shift.

While in the o�-line experiments all input images and object instances are �xed beforehand,

in real-world settings this information is not known in advance. New objects may appear

in the scene and, while learning to segment them, the robot has to keep and integrate the

knowledge of the known classes. We propose a strategy to process incoming images and

extract corresponding features such that, for each new class,Ours detection model is trained,

integrating the knowledge of old and new objects. This is done by �rst training new classi�ers

on the new classes, considering also the information from the objects already known. Then, the

classi�ers previously trained on the old classes are updated using features of the new classes.

The proposed pipeline consists of four main modules (the blocks depicted in Figure6.8).

Updating an instance segmentation model works by(i) automatically collecting ground-truth for

instance segmentation with an interactive pipeline for incoming training images,(ii) extracting

corresponding features and aggregating them such that the information of old and new objects

are integrated in the Minibootstrap and (iii) updating the On-line RPN, the On-line Detection
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Module and the On-line Segmentation Module. In the next paragraphs, we provide further

details for each of the main blocks.

Human-Robot Interaction (HRI) This block allows the human to give commands to

the robot with a module for speech recognition (Speech Recognitionin Figure 6.8), triggering

di�erent states of the system. This allows the user to either teach the robot a new object, by

presenting and rotating it in front of the camera ( train ) or to perform inference, i.e. to segment

objects already known in the scene.

Automatic Data Acquisition When the state of the system is set totrain , this block

extracts a blob of pixels representing the closest object to the robot (Pasquale et al.,2016). This

is used as ground-truth annotation for the new object that is presented by the human. This blob

is computed by exploiting the depth information to segment the object from the background

(Automatic GT Extractor ). Moreover, in order to enhance the background variability in the

training images, the extracted blob is also used by the robot to follow the object with the

gaze (Gaze Controller). To deal with noise in the depth image, we post-process the masks to

ensure spatiotemporal coherence between consecutive frames. Speci�cally, we consider as valid

ground-truth masks those overlapping over a certain threshold with the ones of previous and

subsequent frames.

Feature Extraction Relying on the ground-truth masks provided by the Automatic GT

Extractor and on the corresponding images collected by the robot, this block implements

the Feature Extraction Module as described in Section6.3, with some modi�cations for the

interactive setting. We describe the major di�erences in Section6.8.1.

On-line Segmentation. This block is trained with the proposed approachOurs (see Sec-

tion 6.3.4) relying on the features extracted by the Feature Extraction block. At inference time,

it predicts object masks on a given image. To do this, similarly toOurs , it relies on Mask

R-CNN pretrained on the MS COCO dataset for feature extraction and on the proposed on-line

modules as described in Section6.3.

6.8.1 Incremental Instance Segmentation Learning

When a new object has to be learned, the three on-line modules need to be updated. For the

On-line RPN and the On-line Detection Module, speci�c operations are required to integrate

knowledge of the old classes with the new one and to re-train the modules. For theOn-line

Segmentation Moduleonly the classi�er of the novel class needs to be trained.

Consider a single incremental task scenario, where the robot has been trained onN � 1

classes and must learn to segmentN -th object. To train the new classi�ers for the On-line RPN
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Figure 6.8 Overview of the proposed robotic pipeline for on-line instance segmentation.
At training time (solid arrows), a human teacher shows a new object to the robot, which
automatically acquires the ground-truth annotations exploiting the depth information. Then,
it extracts the features to train the on-line modules. At inference time (dashed arrows), the
robot employs such modules to predict the masks of the images acquired by the camera.

and On-line Detection modules, we must have access to both positive and negative samples of

the new class. While positive samples can be taken from the current image stream, and are

not a�ected by previous objects, obtaining the features for negative samples is more complex.

Furthermore, the classi�ers from the old classes should learn to distinguish the new object as

not belonging to their class. To this end we design two procedures described in the following

paragraphs.

On-line RPN When learning the N -th class, we �rst collect features for On-line RPN

training for that class by extracting convolutional features from the images of the associated

sequence and subsampling them as described in Section6.3.1. Then we for every class we

resample negative features taking into account the whole dataset, including the newly added

class. This ensures that the number of negative samples coming from each image is kept

balanced.

On-line Detection. To integrate old features with those from the new class, we create a

N -th dataset to train a classi�er for the new object, which contains the extracted features for

the new class (positive examples), and a subset of features from the previous classes. TheN � 1

datasets for training the other classi�ers are updated with negative features coming from the

new object.

6.8.2 Discussion and Qualitative Results

We designed the incremental feature extraction procedures for theOn-line RPN and the

On-line Detection Module to be analogous to the ones used in the o�-line experiments (batch

procedures), such that, training the on-line modules withMinibootstrap batches obtained with

the former, provides comparable models to the ones obtained with the batch procedures (and

therefore, comparable accuracy). This is due to the fact that a set of negative samples has the

same probability to end up in the Minibootstrap batches of a classi�er (either of theOn-line
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Figure 6.9 Predictions on test images from the incremental application deployed on the iCub.

Figure 6.10 Dealing with false positives.Left image: an unknown object (a glass) is misclassi�ed
(as a masterchef). Center: training. The robot is provided with the correct label and a
demonstration of the object. Right: after training the new object is correctly classi�ed.

RPN or of the On-line Detection Module), using either of the sample selection pipelines. In

particular, it can be shown that the per-image negative selection probabilities with the two

procedures are equivalent, because each image is considered independently in both cases. This

proves their equivalence.

We qualitatively show the e�ectiveness of the incremental pipeline by deploying it on the

iCub robot. We train ten object instances and report the results of the inference on some

exemplar frames in Figure6.9. In Figure 6.10, we show how the proposed incremental approach

allows to deal with false positive predictions. Key to achieve this is the re-training of theN � 1

classi�ers for previous classes when theN � th object arrives. Indeed, integrating data from the

N -th object when updating the previous N � 1 allows to strongly reduce the amount of false

predictions at inference time.

6.9 Conclusions

The ability of rapidly adapting their visual system to novel tasks is an important requirement

for robots operating in dynamic environments. While state-of-the art approaches for visual

tasks mainly focus on boosting performance, a relatively small amount of methods are designed

to reduce training time. In this perspective, we presented a novel pipeline for fast training of

the instance segmentation task. The proposed approach allows to quickly learn to segment

novel objects also in presence of domain shifts. We designed a two-stage hybrid pipeline to

operate in the typical robotic scenario where streams of data are acquired by the camera of

the robot. Indeed, our pipeline allows to shorten the total training time by extracting a set of
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convolutional features during the data acquisition and to use them in a second step to rapidly

train a set of Kernel-based classi�ers.

We benchmarked our results on two robotics datasets, namely YCB-Video and HO-3D.

On these datasets, we provided an extensive empirical evaluation of the proposed approach

to evaluate di�erent training time/accuracy trade-o�s, comparing results against previous

work (Ceola, Maiettini, Pasquale, Rosasco, et al.,2021) and several Mask R-CNN baselines.

Finally, we demonstrated the application of this work on a real humanoid robot. At this

aim, we adapted the fast training pipeline for incremental region proposal adaptation and

instance segmentation, showing that the robot is able to learn new objects following a short

interactive training session with a human teacher.



Chapter 7

Kernel methods for Wind Prediction

In this second chapter concerning applications of kernel methods, we tackle a challenging

problem from the natural sciences: wind speed forecasting. In contrast to the common practice

of using mechanistic models (i.e. climate simulations) to make forecasts, we adopt a purely

data-driven approach based on kernel ridge regression. Starting from a large dataset of wind

speed readings, measured from anemometers placed in 32 locations in the Abruzzo and Liguria

regions of Italy (central and north west areas of the country), we train supervised models which

learn historical wind patterns to predict its future trends. By running many variations on this

supervised learning template, changing inputs and outputs, algorithms and datasets, our work

focuses on the analysis and interpretation of the data and of the underlying physical processes.

7.1 Introduction

The global consumption of energy produced from wind raised from about87 TW h annually in

the early 2000, to over3500 TW h per year in 2019. This relative growth rate of about+4000 %,

as well as that from solar (about +60 000 %), are order magnitudes larger than that from oil

(approximately +25 %), nuclear (� 3 %) and other more traditional renewable energy sources

like hydroelectric power (approximately +42 %) (Ritchie et al., 2022; BP p.l.c., 2022; Smil,

2017). Thus wind energy will play an increasingly important role in the global economy in

the near future. The ability to predict wind is essential for maintenance of wind power plants

as well as for energy markets relying on predictions of the energy power produced from wind.

Moreover, reliable predictions of wind speed are valuable for private citizens as well as for

public administrations concerned with safety in the case of hazard scenarios.

Atmospheric forecasting and weather predictions have traditionally relied on numerical

simulations of model equations based on physics. However, these mechanistic models, that form

the basis of traditional forecasting, have poor performance close to the ground. Winds near

the surface are a�ected by several processes that occur at spatial and temporal scales that are

below the resolution of the numerical simulations. To account for these unresolved mechanisms,
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alternative approaches use machine learning and predict wind speed close to the ground from

time series of measured data. For a complete survey on time series techniques, independent of

a particular application, see for example Parmezan et al. (2019).

Following this data-driven approach, several works have been carried out with a growing

trend in the use of Deep Learning tools. Among deep architectures, Long-Short Term Memory

(LSTM) Neural Networks (Lindemann et al., 2021) and its variants have received increasing

attention due to their particular suitability to deal with sequential data like time series. In

the context of wind speed prediction a large number of speci�c strategies have been developed.

Many e�orts are directed at designing methods to capture the multi-scale nature of atmospheric

dynamics, where many decades of spatial scales are dynamically coupled in a highly nonlinear

process. The pipeline of these algorithms may combine a multi-scale feature extraction stage

with a following regression algorithm. Feature extraction may be accomplished through Wavelet

Transforms (F. Li, G. Ren, et al., 2019; Yousuf et al., 2021), Singular Spectrum Analysis (Fu

et al., 2020; H. Liu, Mi, et al., 2019), Empirical Mode Decomposition (Fu et al., 2020; Ruiz-

Aguilar et al., 2021), CNNs (Lawal et al., 2021). Other authors attempt to embed sensitivity

to multi-scale dynamics directly into the architecture of a neural network (Araya et al., 2020).

Besides Deep Learning architectures, di�erent algorithms have been developed based on Machine

Learning models (for example kernel methods, Support Vector Regression (Mattos Neto et al.,

2020) and Gaussian Processes (C. Zhang, Wei, et al.,2016)) as well as classical statistical

models like ARIMA and SARIMA (Bivona et al., 2011; Yousuf et al., 2021) and stochastic

processes (Bivona et al.,2011; Carpinone et al., 2015). Furthermore several hybrid models

that combine techniques from di�erent families have been considered (Mattos Neto et al.,2020;

Camelo et al., 2018; Yousuf et al., 2021). Measures from anemometers have been also combined

with LIDAR data for wind forecasting at di�erent altitudes (Mohandes et al., 2021a; Mohandes

et al., 2021b).

Forecasting methods for wind generally need to address its non-stationarity,i.e. that the

statistical distribution of wind speed may vary in time. The rolling or moving window approach

is a widely adopted solution to tackle non stationarity and it consists in updating the model by

periodically retraining the algorithm eliminating obsolete data and adding fresh information

given by newly available data. Although this technique proves crucial in certain applications

like �nancial markets, there is no clear evidence in favor or against this method for wind speed

forecast.

Predictive models are also classi�ed according to their forecast horizon, ranging from Very

Short term (less than 1 hour), Short term (up to about 4 hours) to Medium term (up to 24

hours ahead) but also Long term predictions (more than 1 day). This latter subdivision is

somewhat arbitrary and does not immediately connect to a notion of predictability, which

may be better captured by other physical time scales (e.g. the correlation time of wind speed)

that typically change considerably with location. Moreover, the de�nition of �long term� as
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longer than one day is peculiar to data driven models, whereas physics-driven models typically

forecast several days ahead. Note also that a forecast may be achieved by learning one speci�c

model for the desired horizon, or by inferring directly an array of future values at di�erent

horizons either recursively or all together (F. Li, G. Ren, et al., 2019; H. Liu, Mi, et al., 2019;

Y. Li et al., 2019). Some works exploit information carried by other meteorological variables,

like air pressure or temperature (Trebing et al., 2020), or include spatial correlations among

observations from di�erent geographical locations in a network (Xu et al., 2022; Zhu et al.,

2018; Messner et al.,2019). Remarkably, wind direction, which is usually available together

with wind speed, has been rarely exploited to design features for wind speed forecast, with few

exceptions (Trebing et al., 2020; Chitsazan et al., 2017).

Our work takes a shallow approach,i.e. we use linear models and kernel methods which

bene�t from well-known theoretical guarantees, unlike more commonly considered Deep Neural

Networks. Our main contribution to the literature in this �eld is to provide a systematic analysis

of the algorithm design and a rationale to understand the optimal algorithm based on principles

that are rooted in the physics of the atmosphere. This approach results in design criteria that

allow to tailor algorithms to the speci�c location under study. More speci�cally, we analyze a

massive experimental dataset of wind measured from anemometers placed in 9 locations close to

the ground within the Abruzzo region in the central part of Italy and 23 locations in the Liguria

region, in north western Italy. These two areas were chosen because of their complex orography

and because of the interaction between land and sea circulations, which make wind prediction

extremely challenging. On this data, supervised learning algorithms are trained using historical

values of the wind to predict its future trends at di�erent temporal horizons. We �rst analyze

two locations and a single time horizon and compare systematically several di�erent algorithms

where we vary: the input/output variables; the past history used for training; the linear vs

non-linear statistical model. Motivated by these results, the analysis is extended across all

locations and all forecasting horizons. We �nd that the optimal design as well as its performance

can vary considerably with location; for example, the inclusion of wind direction improves

performances in about half of the locations. Furthermore accounting for non-stationarity with

a rolling window approach does not improve performance. We demonstrate that where and

when the diurnal cycle is robust, the input data should include at least 24h of past history,

to take advantage of the regularity of the pattern. This simple design principle is valid for

all intermediate forecast horizons, that are most a�ected by the daily periodicity. Although

the optimal algorithms vary with location, we identify a single model that preserves good

performances across all datasets. By introducing a measure of performance relative to a widely

used standard in atmospheric modeling, we demonstrate that this algorithm is competitive

with more complex state-of-the-art algorithms. We further corroborate the result by applying

our algorithm to datasets used in state-of-the-art literature and comparing the exact same

diagnostic. To further improve results, future studies could build upon this approach by
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leveraging spatial correlations. Indeed, our predictions are based on data recorded at a single

geographical location, thus exploiting temporal information but missing spatial information.

To this end, one could either include data from di�erent anemometers as input, or integrate

atmospheric modeling which naturally couples di�erent locations through the physics of the

atmosphere.

In section 7.2 our data-driven approach to wind speed forecasting is described together with

the machine learning algorithms and the datasets used. In Section7.3 the main results of our

experiments are shown. In Section7.4 the e�ects of accounting for non-stationarity with a

rolling-window approach are discussed. In Section7.5 the proposed data driven approach is

compared to other methods used within the context of wind speed forecasting. In Section7.6

�nal remarks and observations that follow from the experimental evidence are discussed.

7.2 Data driven models for wind forecast

In this section the problem of wind speed forecasting is described, along with the data-driven

approach used to derive algorithmic solutions. Each time series contains data of wind speed

and direction recorded hourly from the start of 2015 to the end of 2019 (more details about the

datasets can be found in Section7.2.3). In particular, for each time t there are three available

data: the speed of the windst , its meridional component mt and its zonal componentzt , which

are related through the formula st =
q

m2
t + z2

t . This decomposition provides information on

wind strength both in the direction parallel to the lines of latitude (zonal component) and in the

direction parallel to the meridians (meridional component), thus allowing a more �ne-grained

characterization of wind patterns. The two components are obtained from measurements of

wind direction � t and speedst as mt = st cos
�

2�
360� t

�
and zt = st sin

�
2�
360� t

�
, where the angle

� t is zero along the North-South direction, grows clockwise and is measured in degrees. Our

goal is to use this data to learn a model that predicts the wind speedst+ h at a future time

t + h, where h de�nes the forecasthorizon.

We consider machine learning models, which infer the relation between the future value of

the wind speed at time t + h from the past � measurements, where� is called memory, i.e.

bst+ h = f̂ (� t � � +1 ; : : : ; � t ) (7.1)

where f̂ denotes a learned model,bst+ h our prediction at horizon h and the input � t can be

either the sole speedst or the pair (zt ; mt ). Figure 7.1 gives a pictorial representation of the

wind speed prediction task.
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Figure 7.1 For each timet in the time series an input sample is built from the past � timesteps.
The associated output is the value of wind speed measured att + h.

Di�erent combinations of horizon h, memory � , and input data � t are studied, in order to

understand how they a�ect the overall prediction performance. In particular hourly horizons

h 2 f 1; 3; 6; 12; 18; 24g and memories up to3 days in the past � 2 f 2; 6; 24; 48; 72g are considered.

For a �xed horizon h and memory � the following options for designing the inputs and outputs

are taken into account (summarized in Figure7.2).

s ! s where both input and output are the wind speed:

bst+ h = f̂ (st � � +1 ; : : : ; st ) ; (7.2)

zm! s where the input is divided in zonal and meridional components and the output is wind

speed

bst+ h = f̂ ((zt � � +1 ; mt � � +1 ); : : : ; (zt ; mt )) ; (7.3)

zm! zm where the input is divided in zonal and meridional components, each component of the

wind vector is learned separately and the wind speed is computed from the components

bzt+ h = f̂ 1((zt � � +1 ; mt � � +1 ); : : : ; (zt ; mt )) (7.4)

bmt+ h = f̂ 2((zt � � +1 ; mt � � +1 ); : : : ; (zt ; mt )) (7.5)

bst+ h =
q

bz2
t+ h + bm2

t+ h : (7.6)

More details about the computational procedures to derive the learning modelf̂ can be found

in Section 7.2.1.
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Figure 7.2 For each timet in the time series an input sample is constructed either including
both wind components (zm! s and zm! zm) or considering only the wind speed (s ! s). For
zm! s and s ! s, the associated output is the value of wind speed measured att + h, where
h is the horizon. For zm! zmthe two wind components at time t + h are learned separately
and from them the wind speed is reconstructed.

In order to measure the predictive performance of our models, the data from each location

is split at a �xed date (January 1st, 2018). Then all data before this date (the training set) is

used to train model f̂ , and the remaining data (test set) is used to test predictive performance

of the model. Note that data may be missing at speci�c dates for technical issues with the

anemometers, and the missing data depend on location. The splitting criterion used leads

to large variations in the training set size between stations; however it allows for a better

comparison among the di�erent sites by making the test sets uniform in size for each region.

Throughout the paper, a static approach to splitting is used where a model's training set is

not updated in time. In Section 7.4 we motivate such choice with a case study to quantify the

potential gain from updating the training set continuously with newly available samples.

Accuracy of the predictions is quanti�ed with the normalised root mean squared error

(NRMSE). For n predictions it is de�ned as

NRMSE =

s P n
t=1 (st � bst )2

P n
t=1 s2

t
: (7.7)

7.2.1 Supervised learning

For a given horizon h, memory � and input-output for the model f̂ , n input-output pairs

(x t ; yt )n
t=1 comprise our training samples. For example, for thezm! s model, pairs are de�ned

as:

x t =
�
zt � � +1 ; mt � � +1 ; : : : ; zt ; mt

�
2 Rd

yt = st+ h ;
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where d = � � k and k is the number of variables in � t . Denote by X 2 Rn� d the lag matrix

with rows f x t gn
t=1 , and ŷ 2 Rn be the vector of outputs with elementsŷt . In all analyses of this

chapter we will be using two models, introduced in Chapters2 and 3. The �rst one is linear

least-squares regression which assumes that future wind behavior depends linearly on its past

trends, and learns functions in the space of Equation (2.15) by minimizing

1
n

nX

i =1

(hx i ; wi � yi )2 =
1
n

kX w � yk2; w 2 Rd (7.8)

with respect to vector w. As seen in Chapter2, linear function do not allow to account for

complex interactions between past and future behavior of the wind. Kernel ridge regression

(KRR) introduces a non-linear transformation of the features via the kernel function k :

Rd � Rd ! R which intuitively measures the similarity between two data-points. In our

experiments we always used the Gaussian kernel (Equation (2.24)) which depends on parameter

 . In particular, we employed the Falkon algorithm (Rudi, Carratino, et al., 2017; Meanti,

Carratino, Rosasco, et al.,2020) to solve an approximate version of KRR with greatly improved

running time, see Chapter3 for more details.

7.2.2 Hyperparameter selection

For each location under consideration model hyperparameters (e.g� and  for KRR) have been

estimated using �ve-fold cross-validation. A two-step grid search was adopted: in the �rst step

hyperparameters were chosen to maximize the (5-fold cross-validated)R2 score on a coarse grid,

and in the second step a new search was performed on a grid re�ned around the previously

identi�ed optimum. The number of Nyström centers m were set to 10�
p

n which provided a

good trade-o� in terms of accuracy versus time.

7.2.3 Datasets

All time series analysed in this work consist of observations recorded by anemometers located

at an altitude of 10 m above ground level, except for two stations (A1 and A5) which are 6 m

above ground level. Measurements are taken from 32 meteorological stations spread across

the Liguria and Abruzzo regions of Italy, both characterized by the presence of a complex

orography. These anemometers face diverse dynamical conditions, going from plains to valleys

up to the peaks of high mountains (see Figure7.3 for more details). Proximity to the sea also

signi�cantly contributes to enrich the wind dynamics. The data series span a period between 4

and 7 years, depending on the station and have a time step of 1 hour.

Most recent literature uses data coming from wind farms, where the anemometers are

typically around 90 meters above ground. Note that within the atmospheric boundary layer,

the vortical structures typical of turbulence (eddies) have a size that scales with distance from
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the ground. Therefore wind at 90 m from the ground is more predictable as it changes over

longer timescales, while wind at10 m from the ground (our datasets) is dominated by small

eddies which change on a short timescale and are hard to predict.

7.3 Results

In this section the main results obtained for wind speed prediction with di�erent models are

described. We begin by analysing the behavior of our models on two representative stations,

comparing di�erent inputs, outputs and model types. The observations made on this subset of

locations are then taken into account to inform a full analysis of the whole set of stations.

7.3.1 Analysis of two case studies

The stations considered here are A1 in Abruzzo and L1 in Liguria (see Figure7.3) as repre-

sentatives of the whole dataset. They are geographically distant, and diverse regarding both

terrain morphology and wind statistics, with L1 being on a mountain peak at 980 m of altitude

and A1 in a plain close to the sea.

The forecasting task is �xed to wind speed prediction at a3 hour horizon, and we wish to

identify how the following parameters a�ect predictive performance.

1. Input and output variables. Determine which input-output variables out of s ! s, zm! s

and zm! zmresults in better predictive performance. s ! s consists in predicting future

wind speed from past wind speed,zm! s uses both wind speed and direction in the

input through the zonal and meridional components, andzm! zmpredicts both zonal

and meridional components separately, to then reconstruct the wind speed itself.

2. Model class. Distinguish between the performance oflinear models (with the linear least

squares (LLS) algorithm), and non-linear models represented by KRR.

3. Memory � . Investigate the e�ect of varying the amount of past data considered at each

input point. Values between 2 h and 72 h are considered.

The analysis of predictive accuracy as measured by theNRMSE for the di�erent parameters

described above is shown in Figure7.4, and is compared to the performance of a naïve model

(the persistencemodel), whose predictions for timet + h are the observed values at timet.

From panel (a) a few observations can be made:

ˆ All models outperform the persistence model, reducing theNRMSE by up to 20 % which

is quite signi�cant.

ˆ The input design which performs best is the one which takes both wind components as

inputs and predicts the wind speed directly, supporting the importance of wind direction
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Figure 7.3 Physical location of the 32 anemometers in our dataset.
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for forecasting. However, restricting the comparison to the linear models, thes ! s

input-output design performs better. Hence gains from using wind direction can only be

leveraged by non-linear models, due to the non-linear dependency of wind speed from the

two components of the wind vector.

ˆ For �xed input and output variables, non-linear algorithms are systematically better than

their linear counterparts.

ˆ Overall using 24 h of memory seems to provide the best trade-o� between performance

and input size. Higher amounts of memory do not seem bene�cial, and lower amounts of

memory worsen performance noticeably.

To evaluate the robustness of these initial observations, the same comparison is provided for

a second location (L1), see Figure7.4(b). First, improvements in NRMSE over the persistence

model drop dramatically to at most 4 %. Second, the use of zonal and meridional components

in the input brings no bene�t (even for non-linear models). Third, linear and non-linear

models achieve the same performance. Fourth, increasing memory above6 h provides no bene�t.

How can such discrepancies between two di�erent stations be interpreted? Is there a physical

mechanism at the origin of these di�erences? In order to answer such questions we extend the

analysis to a larger number of stations.

7.3.2 Model design

In this section, the analysis of performance for di�erent model types introduced in the previous

section (i.e. taking into account input-output design, memory, model type) is expanded to the

whole set of 32 stations. The forecast horizon is further added into the mix of model parameters

under consideration. Short horizons are easier to predict even with simple models as their

departure from the current state of the atmosphere is small. As the horizon increases, the

chaotic dynamics in the atmosphere causes the wind to decorrelate from its current value more

and more, thus the input bears less and less information about the output and predictions

become more challenging. Overall a total of 186 model instances are tested for each location,

resulting in 5952trained models. Noting that for each training, the appropriate cross-validation

must also be run to chose a model's hyperparameters (as described in Section7.2.2), the total

computational load is very high. To reach the required scale in reasonable times, we rely on the

Falkon library (Rudi, Carratino, et al., 2017; Meanti, Carratino, Rosasco, et al.,2020) which

implements an approximation of KRR, coupled with clever optimization algorithms, on the

GPU.

The aims of this extensive survey are to investigate (a) the role played by the input-output

design and the model (i.e. linear or non-linear), (b) the e�ects of memory on predictions, and

their physical interpretation, (c) the possibility to identify a single model type which performs

well in each geographical location.
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Persistence

Figure 7.4 Prediction accuracy for di�erent memories on stations A1 and L1. Panel (a) shows
the forecast accuracy on station A1. All models improve considerably over the persistence
(dashed grey line). The best among non-linear models (solid lines, indicated with KRR) is the
zm! s model (solid blue line) with 24 h memory, which improves on the best linear model
(dashed lines, indicated with LLS). Panel (b) displays results on station L1. In this other
location the improvement over persistence is lower, and the best linear model is on par with
the best non-linear one. All predictions were performed on a 3 hour horizon.

Input-Output Design

As can be seen in Figure7.5 (b), the �rst observation of the preliminary analysis can be

con�rmed: directly predicting the wind leads to much better performance, especially for

long-term predictions.

On the input side, it can be observed in Figure7.5 (a) that the bene�ts of including the

direction in the input depend strongly on the location (note that this experiment used the

KRR model). This result is consistent with the results of Section 7.3.1, where two di�erent

stations had two di�erent behaviors. In conclusion, the in�uence of wind direction on its speed

is complex, and not always helpful for improving predictions.

Finally, panel (c) shows that nonlinear models remain a better solution, with potentially

moderate gains (e.g. in the case of 6 hours ahead predictions), but virtually no downside.

Another observation is that the performance improvement of KRR over LLS is smallest for

horizons of 1 and 24 hours. This can be qualitatively understood by considering the predictability

of wind at di�erent forecast horizons. A horizon of 1 hour is always within the correlation

time of wind speed, hence for this horizon the time series can be described well by a linear

autoregressive process. For 24 hours horizon, the e�ect of the diurnal cycle (easy to predict)
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� = 2 (short memory), and with other values of � is plotted in Figure 7.6 for every station and

horizon. Each line starts at zero (since � NRMSE = NRMSE(� h) � NRMSE(2 h), and at the

�rst point � = 2). For longer memories, it either decreases if longer memory is bene�cial, or it

increases if longer memory is detrimental.

We �nd that memory a�ects our models' accuracy in a way that depends on the horizon. For

short-term predictions (1 hour, Figure 7.6 (a)), about 50 % of the stations are better predicted

using a memory of 2 hours, rather than 24 hours. For most stations (78 %), the optimal memory

increases when the horizon is set toh = 3 h. The number of stations which bene�t from longer

memory further increases when the horizon is set to 6, 12 and 18 hours and for such medium

term scenarios, the optimal memory is 24 hours for most stations (between88 % and 97 %).

When the horizon is set to h = 24 h, it can be observed that even though most stations (84 %)

bene�t from a longer memory, the improvement is marginal (an average decrease of 0.002

in NRMSE). Whenever longer memory is bene�cial,� = 24 h is a knee-point, i.e. there is a

considerable gain in switching from� = 6 hours to � = 24 hours, but further increasing memory

to � > 24 hours gives only small improvements, at a substantial computational expense.

We hypothesize that the role of memory laid out above can be traced back to the diurnal

cycle in the atmosphere. In a nutshell, the diurnal cycle represents that many environmental

quantities in the atmosphere undergo oscillations with a period of 24 hours, caused by periodicity

of the sunlight. In the presence of a reliable diurnal cycle, the wind at timet may be well-

predicted by the wind at time t � 24. At very short horizons however, the wind changes

little, thus better predictions may be achieved based on persistence, rather than by exploiting

the diurnal cycle. In this case, a memory of 1 hour is optimal because a model which only

takes the most recent data as input outperforms a model where the most informative data are

combined with less informative data at previous times. At medium term, forecasts become

more challenging as persistence is a poor predictor of wind. At these horizons, it is bene�cial to

include the full 24 hour cycle preceding the target timet + h, so that the prediction can bene�t

from the regularity of the wind. Finally, predictions at h = 24 h are even more challenging,

and all models incur in signi�cant errors. In this case, the most recent data (at time t) is

exactly 24 hours before the target and is expected to be well correlated with wind at the target

time. Moreover, there is a full diurnal cycle between the current time and the target time,

thus including data prior to t does not provide information about the most recent diurnal

cycle, but about the preceding one. This is expected to be less informative, hence the marginal

improvement in � NRMSE .

Analysis of the Wind's Diurnal Cycle

To test the hypothesis that the diurnal cycle is at the origin of longer optimal memories for

intermediate horizons, an additional analysis is carried out to check the correlation between

bene�ts from using 24 h memory, and diurnal cycle strength. The strength of the diurnal



7.3
R

esults
143

6
24

72
48

! NRMSE
<latexit sha1_base64="rDB2rCZkd1BBhbBzISNCLRqRZiw=">AAACC3icbVDJSgNBEO2JW4xb1IMHL41B8BRmRNBjcAEvSlyyQBJCTacSm/QsdNcIYZhP8Cu86smbePUjPPgvzsQcNPpOj/eqqFfPDZU0ZNsfVm5mdm5+Ib9YWFpeWV0rrm/UTRBpgTURqEA3XTCopI81kqSwGWoEz1XYcIcnmd+4R21k4N/SKMSOBwNf9qUASqVucat9ioqgG7c9oDvtxZfXFzdnSdItluyyPQb/S5wJKbEJqt3iZ7sXiMhDn4QCY1qOHVInBk1SKEwK7chgCGIIA2yl1AcPTSceP5Dw3cgABTxEzaXiYxF/bsTgGTPy3HQyi2mmvUz8z2tF1D/qxNIPI0JfZIdIKhwfMkLLtBnkPamRCLLkyKXPBWggQi05CJGKUVpVIe3Dmf7+L6nvlx277FwdlCrHk2bybJvtsD3msENWYeesympMsIQ9sif2bD1YL9ar9fY9mrMmO5vsF6z3L9z/mxU=</latexit><latexit sha1_base64="rDB2rCZkd1BBhbBzISNCLRqRZiw=">AAACC3icbVDJSgNBEO2JW4xb1IMHL41B8BRmRNBjcAEvSlyyQBJCTacSm/QsdNcIYZhP8Cu86smbePUjPPgvzsQcNPpOj/eqqFfPDZU0ZNsfVm5mdm5+Ib9YWFpeWV0rrm/UTRBpgTURqEA3XTCopI81kqSwGWoEz1XYcIcnmd+4R21k4N/SKMSOBwNf9qUASqVucat9ioqgG7c9oDvtxZfXFzdnSdItluyyPQb/S5wJKbEJqt3iZ7sXiMhDn4QCY1qOHVInBk1SKEwK7chgCGIIA2yl1AcPTSceP5Dw3cgABTxEzaXiYxF/bsTgGTPy3HQyi2mmvUz8z2tF1D/qxNIPI0JfZIdIKhwfMkLLtBnkPamRCLLkyKXPBWggQi05CJGKUVpVIe3Dmf7+L6nvlx277FwdlCrHk2bybJvtsD3msENWYeesympMsIQ9sif2bD1YL9ar9fY9mrMmO5vsF6z3L9z/mxU=</latexit><latexit sha1_base64="rDB2rCZkd1BBhbBzISNCLRqRZiw=">AAACC3icbVDJSgNBEO2JW4xb1IMHL41B8BRmRNBjcAEvSlyyQBJCTacSm/QsdNcIYZhP8Cu86smbePUjPPgvzsQcNPpOj/eqqFfPDZU0ZNsfVm5mdm5+Ib9YWFpeWV0rrm/UTRBpgTURqEA3XTCopI81kqSwGWoEz1XYcIcnmd+4R21k4N/SKMSOBwNf9qUASqVucat9ioqgG7c9oDvtxZfXFzdnSdItluyyPQb/S5wJKbEJqt3iZ7sXiMhDn4QCY1qOHVInBk1SKEwK7chgCGIIA2yl1AcPTSceP5Dw3cgABTxEzaXiYxF/bsTgGTPy3HQyi2mmvUz8z2tF1D/qxNIPI0JfZIdIKhwfMkLLtBnkPamRCLLkyKXPBWggQi05CJGKUVpVIe3Dmf7+L6nvlx277FwdlCrHk2bybJvtsD3msENWYeesympMsIQ9sif2bD1YL9ar9fY9mrMmO5vsF6z3L9z/mxU=</latexit><latexit sha1_base64="rDB2rCZkd1BBhbBzISNCLRqRZiw=">AAACC3icbVDJSgNBEO2JW4xb1IMHL41B8BRmRNBjcAEvSlyyQBJCTacSm/QsdNcIYZhP8Cu86smbePUjPPgvzsQcNPpOj/eqqFfPDZU0ZNsfVm5mdm5+Ib9YWFpeWV0rrm/UTRBpgTURqEA3XTCopI81kqSwGWoEz1XYcIcnmd+4R21k4N/SKMSOBwNf9qUASqVucat9ioqgG7c9oDvtxZfXFzdnSdItluyyPQb/S5wJKbEJqt3iZ7sXiMhDn4QCY1qOHVInBk1SKEwK7chgCGIIA2yl1AcPTSceP5Dw3cgABTxEzaXiYxF/bsTgGTPy3HQyi2mmvUz8z2tF1D/qxNIPI0JfZIdIKhwfMkLLtBnkPamRCLLkyKXPBWggQi05CJGKUVpVIe3Dmf7+L6nvlx277FwdlCrHk2bybJvtsD3msENWYeesympMsIQ9sif2bD1YL9ar9fY9mrMmO5vsF6z3L9z/mxU=</latexit>

(a)
(b)

(c)

(d)
(e)

(f)

average
better
w

orse

6
24

72
48

6
24

72
48

0.050

-0.05

-0.1

0.050

-0.05

-0.1

m
em

ory [hours]

h =
 12

h =
 18

h =
 24

h =
 3

h =
 6

h =
 9

F
igure

7.6
B

ene�ts
of

m
em

ory.
(a)-(f)

V
ariation

in
p

erform
ance

�
N

R
M

S
E

=
N

R
M

S
E

(�
)

�
N

R
M

S
E

(2
h)

b
etw

een
the

lo
cally

b
est

algorithm
w

ith
m

em
ory

�
and

the
sam

e
algorithm

w
ith

reduced
m

em
ory�

=
2

hours
for

di�erenttim
e

horizons
((a)

to
(f)

correspond
to

horizons
h

=
1,

3,
6,

8,
12,

24
hours).

E
ach

dashed
line

represents
one

location;
blue

and
yellow

m
ark

locations
w

here
a

m
em

ory
of

24
hours

im
proves

or
deteriorates

perform
ance

respectively.
R

ed
solid

lines
represent

averages
over

alllo
cations.

A
t

interm
ediate

horizons
(3

to
18

hours,
panels

(b)-(e))),
an

input
m

em
ory

�
=

24
hours

is
b

ene�cialand
longer

m
em

ories
lead

to
m

inor
im

provem
ent.

cycle
can

b
e

m
easured

by
com

puting
the

auto
correlation

of
the

w
ind

tim
e

series
at

24
hours

(R
ss (24

h)).
T

he
gain

�
N

R
M

S
E

(24
h)

is
quanti�ed

by
com

paring
m

o
dels

trained
w

ith
�

=
24

h

and
w

ith
�

=
2

h.
F

igure
7.7

includes
all

stations
and

forecast
horizons

and
con�rm

s
the

hyp
othesized

relationship
b

etw
een

the
strength

of
the

diurnalcycleR
ss (24

h)
and

the
b

ene�t

of
using

a
24

h
m

em
ory

in
the

input.
F

irst,
at

interm
ediate

forecasting
tim

es
(colored

stars),

the
m

ajor
bene�ts

of
a

24
hour

m
em

ory
are

clearly
achieved

w
hen

the
diurnalcycle

is
stronger.

S
econd,

this
clear

trend
vanishes

at
very

short
and

long
horizons

(h=
1

hour
and

h
=

24
hours,

grey
triangles).

S
election

of
a

single
m

o
del

In
the

previous
analyses,

the
lo

cally
b

est
m

o
del

w
as

used,
w

hich
changes

for
each

station.

H
ow

ever,
it

is
desirable

in
practice

to
select

a
single

m
o

del
that

m
ay

p
erform

w
ell

over
all

stations
so

that
it

m
ay

b
e

used
as

a
default

in
the

absence
of

b
etter

inform
ation.

For
each

horizon,
w

e
callthe

m
o

delcon�guration
w

hich
m

ost
frequently

p
erform

s
b

est
the

globally
best

m
odel.

In
F

igure
7.8

it
can

b
e

seen
that

the
globally

b
est

m
o

delloses
little

accuracy
over

the

lo
cally

b
est

m
o

del
(a

few
p

ercentage
p

oints
ofN

R
M

S
E

).
T

he
globally

b
est

m
o

del
features:

�
=

2
h

for
1-hour-ahead

predictions,�
=

24
h

for
3,

6,
12

and
24

hour
ahead

predictions
and



7.3 Results 144

6h ahead

0.0

0.1

-0.1

-0.2

-0.3

3h ahead

0.1 0.4 0.7

12h ahead

1h ahead

24h ahead

!
N

R
M

S
E

(2
4

h)
<latexit sha1_base64="nrLL4HAMSUbbHVV6mJpDrJ+4Xw8=">AAACG3icbVDLSgNBEJz1bXxFPXoZDGIECbsi6DH4AC+Kr0QhG0LvpI2Dsw9meoWw7Cf4CX6FVz15E68ePPgv7sYIGq1TUdVNV5cXKWnItt+toeGR0bHxicnC1PTM7FxxfqFuwlgLrIlQhfrSA4NKBlgjSQovI43gewovvJvd3L+4RW1kGJxTN8KmD51AXkkBlEmt4qq7h4qglbg+0LX2k6PTw7P9NC1vbLrr39p1utYqluyK3QP/S5w+KbE+jlvFD7cditjHgIQCYxqOHVEzAU1SKEwLbmwwAnEDHWxkNAAfTTPpPZTyldgAhTxCzaXiPRF/biTgG9P1vWwyj2gGvVz8z2vEdLXdTGQQxYSByA+RVNg7ZISWWVPI21IjEeTJkcuAC9BAhFpyECIT46y6QtaHM/j9X1LfqDh2xTnZLFV3+s1MsCW2zMrMYVusyg7YMasxwe7YA3tkT9a99Wy9WK9fo0NWf2eR/YL19gl/mKE5</latexit><latexit sha1_base64="nrLL4HAMSUbbHVV6mJpDrJ+4Xw8=">AAACG3icbVDLSgNBEJz1bXxFPXoZDGIECbsi6DH4AC+Kr0QhG0LvpI2Dsw9meoWw7Cf4CX6FVz15E68ePPgv7sYIGq1TUdVNV5cXKWnItt+toeGR0bHxicnC1PTM7FxxfqFuwlgLrIlQhfrSA4NKBlgjSQovI43gewovvJvd3L+4RW1kGJxTN8KmD51AXkkBlEmt4qq7h4qglbg+0LX2k6PTw7P9NC1vbLrr39p1utYqluyK3QP/S5w+KbE+jlvFD7cditjHgIQCYxqOHVEzAU1SKEwLbmwwAnEDHWxkNAAfTTPpPZTyldgAhTxCzaXiPRF/biTgG9P1vWwyj2gGvVz8z2vEdLXdTGQQxYSByA+RVNg7ZISWWVPI21IjEeTJkcuAC9BAhFpyECIT46y6QtaHM/j9X1LfqDh2xTnZLFV3+s1MsCW2zMrMYVusyg7YMasxwe7YA3tkT9a99Wy9WK9fo0NWf2eR/YL19gl/mKE5</latexit><latexit sha1_base64="nrLL4HAMSUbbHVV6mJpDrJ+4Xw8=">AAACG3icbVDLSgNBEJz1bXxFPXoZDGIECbsi6DH4AC+Kr0QhG0LvpI2Dsw9meoWw7Cf4CX6FVz15E68ePPgv7sYIGq1TUdVNV5cXKWnItt+toeGR0bHxicnC1PTM7FxxfqFuwlgLrIlQhfrSA4NKBlgjSQovI43gewovvJvd3L+4RW1kGJxTN8KmD51AXkkBlEmt4qq7h4qglbg+0LX2k6PTw7P9NC1vbLrr39p1utYqluyK3QP/S5w+KbE+jlvFD7cditjHgIQCYxqOHVEzAU1SKEwLbmwwAnEDHWxkNAAfTTPpPZTyldgAhTxCzaXiPRF/biTgG9P1vWwyj2gGvVz8z2vEdLXdTGQQxYSByA+RVNg7ZISWWVPI21IjEeTJkcuAC9BAhFpyECIT46y6QtaHM/j9X1LfqDh2xTnZLFV3+s1MsCW2zMrMYVusyg7YMasxwe7YA3tkT9a99Wy9WK9fo0NWf2eR/YL19gl/mKE5</latexit><latexit sha1_base64="nrLL4HAMSUbbHVV6mJpDrJ+4Xw8=">AAACG3icbVDLSgNBEJz1bXxFPXoZDGIECbsi6DH4AC+Kr0QhG0LvpI2Dsw9meoWw7Cf4CX6FVz15E68ePPgv7sYIGq1TUdVNV5cXKWnItt+toeGR0bHxicnC1PTM7FxxfqFuwlgLrIlQhfrSA4NKBlgjSQovI43gewovvJvd3L+4RW1kGJxTN8KmD51AXkkBlEmt4qq7h4qglbg+0LX2k6PTw7P9NC1vbLrr39p1utYqluyK3QP/S5w+KbE+jlvFD7cditjHgIQCYxqOHVEzAU1SKEwLbmwwAnEDHWxkNAAfTTPpPZTyldgAhTxCzaXiPRF/biTgG9P1vWwyj2gGvVz8z2vEdLXdTGQQxYSByA+RVNg7ZISWWVPI21IjEeTJkcuAC9BAhFpyECIT46y6QtaHM/j9X1LfqDh2xTnZLFV3+s1MsCW2zMrMYVusyg7YMasxwe7YA3tkT9a99Wy9WK9fo0NWf2eR/YL19gl/mKE5</latexit>

Rss (24 h)
<latexit sha1_base64="BhSH2eulNagMgljOLlHELi/snzs=">AAACCnicbVDLSsNAFJ3UV62vqODGzWARKkhJSkGXRTcuq9gHtKVMprft0MkkzNwIJfYP/Aq3unInbv0JF/6LSexCq2d1OOde7rnHC6Uw6DgfVm5peWV1Lb9e2Njc2t6xd/eaJog0hwYPZKDbHjMghYIGCpTQDjUw35PQ8iaXqd+6A21EoG5xGkLPZyMlhoIzTKS+fXDTj42ZlSrV7mnXZzjWfjyenfTtolN2MtC/xJ2TIpmj3rc/u4OARz4o5JIZ03GdEHsx0yi4hFmhGxkIGZ+wEXQSqpgPphdn+Wf0ODIMAxqCpkLSTISfGzHzjZn6XjKZRjSLXir+53UiHJ73YqHCCEHx9BAKCdkhw7VIigE6EBoQWZocqFCUM80QQQvKOE/EKGmqkPThLn7/lzQrZdcpu9fVYu1i3kyeHJIjUiIuOSM1ckXqpEE4uSeP5Ik8Ww/Wi/VqvX2P5qz5zj75Bev9Czipmh8=</latexit><latexit sha1_base64="BhSH2eulNagMgljOLlHELi/snzs=">AAACCnicbVDLSsNAFJ3UV62vqODGzWARKkhJSkGXRTcuq9gHtKVMprft0MkkzNwIJfYP/Aq3unInbv0JF/6LSexCq2d1OOde7rnHC6Uw6DgfVm5peWV1Lb9e2Njc2t6xd/eaJog0hwYPZKDbHjMghYIGCpTQDjUw35PQ8iaXqd+6A21EoG5xGkLPZyMlhoIzTKS+fXDTj42ZlSrV7mnXZzjWfjyenfTtolN2MtC/xJ2TIpmj3rc/u4OARz4o5JIZ03GdEHsx0yi4hFmhGxkIGZ+wEXQSqpgPphdn+Wf0ODIMAxqCpkLSTISfGzHzjZn6XjKZRjSLXir+53UiHJ73YqHCCEHx9BAKCdkhw7VIigE6EBoQWZocqFCUM80QQQvKOE/EKGmqkPThLn7/lzQrZdcpu9fVYu1i3kyeHJIjUiIuOSM1ckXqpEE4uSeP5Ik8Ww/Wi/VqvX2P5qz5zj75Bev9Czipmh8=</latexit><latexit sha1_base64="BhSH2eulNagMgljOLlHELi/snzs=">AAACCnicbVDLSsNAFJ3UV62vqODGzWARKkhJSkGXRTcuq9gHtKVMprft0MkkzNwIJfYP/Aq3unInbv0JF/6LSexCq2d1OOde7rnHC6Uw6DgfVm5peWV1Lb9e2Njc2t6xd/eaJog0hwYPZKDbHjMghYIGCpTQDjUw35PQ8iaXqd+6A21EoG5xGkLPZyMlhoIzTKS+fXDTj42ZlSrV7mnXZzjWfjyenfTtolN2MtC/xJ2TIpmj3rc/u4OARz4o5JIZ03GdEHsx0yi4hFmhGxkIGZ+wEXQSqpgPphdn+Wf0ODIMAxqCpkLSTISfGzHzjZn6XjKZRjSLXir+53UiHJ73YqHCCEHx9BAKCdkhw7VIigE6EBoQWZocqFCUM80QQQvKOE/EKGmqkPThLn7/lzQrZdcpu9fVYu1i3kyeHJIjUiIuOSM1ckXqpEE4uSeP5Ik8Ww/Wi/VqvX2P5qz5zj75Bev9Czipmh8=</latexit><latexit sha1_base64="BhSH2eulNagMgljOLlHELi/snzs=">AAACCnicbVDLSsNAFJ3UV62vqODGzWARKkhJSkGXRTcuq9gHtKVMprft0MkkzNwIJfYP/Aq3unInbv0JF/6LSexCq2d1OOde7rnHC6Uw6DgfVm5peWV1Lb9e2Njc2t6xd/eaJog0hwYPZKDbHjMghYIGCpTQDjUw35PQ8iaXqd+6A21EoG5xGkLPZyMlhoIzTKS+fXDTj42ZlSrV7mnXZzjWfjyenfTtolN2MtC/xJ2TIpmj3rc/u4OARz4o5JIZ03GdEHsx0yi4hFmhGxkIGZ+wEXQSqpgPphdn+Wf0ODIMAxqCpkLSTISfGzHzjZn6XjKZRjSLXir+53UiHJ73YqHCCEHx9BAKCdkhw7VIigE6EBoQWZocqFCUM80QQQvKOE/EKGmqkPThLn7/lzQrZdcpu9fVYu1i3kyeHJIjUiIuOSM1ckXqpEE4uSeP5Ik8Ww/Wi/VqvX2P5qz5zj75Bev9Czipmh8=</latexit>

18h ahead

B
en

eÞ
t o

f m
em

or
y

Figure 7.7 At intermediate horizons, a 24-hour memory is bene�cial in the presence of a
strong diurnal cycle. Bene�ts of 24-hour memory are de�ned as � NRMSE = NRMSE(24 h) �
NRMSE(2 h), i.e. the di�erence in performance between the locally best algorithm with memory
24 h and the same algorithm with reduced memory� = 2 hours. The strength of the diurnal
cycle is de�ned as the normalized autocorrelation of the wind speeds(t) at a lag of 24 hours:
Rss(24 h) = h(s(t) � �s)(s(t + 24h) � �s)i =� 2

s , where �s and � s are the mean value and the standard
deviation of s(t) respectively, computed over non-overlapping �ve-day windows. Each symbol
represents data averaged over one month for a single location and forecast horizon (colored
stars: intermediate horizons; grey triangles short and long horizons).

� = 72 h for 18 hour ahead predictions. The globally best input-output design iszm! s for all

horizons except for the 18 hour horizon, where the global best iss ! s.
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performance with respect to the batch (non-updating) model, although the improvement may

be somewhat marginal.

Motivated by these results, we test whether performance of our model improves when an

updating procedure is incorporated. For the sake of simplicity a single station (A1) is considered,

using a forecast horizon of 3 hours and just the locally best model settings (memory of24 h,

zm! s input-output design). The proposed update procedure is based on a simple sliding

window approach, of which the following variants are considered (illustrated in Figure7.9):

Train 1 Test 1

1AM of January 1st, 2018

Train 1 Test 1

Train 2 Test 2

Train 1 Test 1

Train 2 Test 2

Static

Online

Incremental

Figure 7.9 A graphical illustration of the updating processes for the static, online and incremental
models.

ˆ The static (non-updated) model is the one discussed in Section7.3. It is trained only

once, and uses a training set that starts from the beginning of the series until the last

hour of the year 2017 (a total ofN = 9805 data points).

ˆ The online (updated) model, where starting from 1 AM of January 1st , 2018, the model

is trained on the previous N = 9805 data points to predict the data of the next week

(7 � 24 = 168 samples). The procedure is repeated by training on the last9805points

before 1 AM of January 7t h and testing on the second week of January, and so on through
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the end of the series. We found that retraining more frequently than every 7 days provided

no advantage (data not shown).

ˆ The incremental (updated) model is similar to the online model but when re-training, all

available data before the time we want to predict is considered. Therefore the training

set size increases as the testing dates move forward.

ˆ The online (3m) model is de�ned as theonline model but using a smaller training set

with 2232samples (3 months) instead of the9805used in the online model. This training

set spanning one season should demonstrate the potential bene�ts of forgetting obsolete

data.

On the test set of the (A1) station, the NRMSE of the four models summarized in Figure7.9

is as follows,static: 0:39� 0:05, online: 0:38� 0:05, incremental: 0:38� 0:05 and online (3m):

0:40� 0:061, suggesting small di�erences. In fact, di�erences are indeed negligible, as the mean

pairwise di�erence in NRMSE between any two models is smaller than the standard deviation.

Note that discrepancies among the di�erent models do sometimes occur as represented in

Figure 7.10 (right panel), although these instances are rare.

This result may be counterintuitive, as updating the model with more recent information is

expected to be bene�cial. These bene�ts are modest in our case, as can be seen quantitatively by

comparing the NRMSE and qualitatively by comparing the online vs static result in Figure 7.10,

both in regular conditions (left panel) and irregular conditions (right panel). Additionally, these

rolling window approaches come at the cost of increasing the computational load noticeably,

since an expensive training step needs to be performed more frequently. On the other hand,

the bene�ts of a large training set can be seen, especially in instances where the wind cycle is

disrupted and discrepancies emerge among the di�erent models Figure7.10 (right panel). In

this representative example, the shortest training set (Online 3m) performs poorly with respect

to all other models. We propose that the smaller training set does not have enough statistical

power to distinguish a variety of less common situations.

1Here, errors are the standard deviation of the NRMSE on each individual month
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Figure 7.10 Observed wind speed (black) compared to predictions obtained with the 4 di�erent
models described in the text (colored lines, see legend).

7.5 Comparison with state-of-the-art models

In this section the performance of the best models of this paper is compared to that of

other algorithms which have been proposed in the literature for predicting wind speed. An

approximate comparison between two models (even when they are used on di�erent datasets

can be made by taking into account each model's improvement over the naïve persistence

model. A metric  RMSE is de�ned which captures the improvement of a speci�c model (F )

over the persistence (Pers) on a speci�c dataset in terms of the Root Mean Squared Error

RMSE =
q

1
n

P n
t=1 (st � bst )2:

 RMSE (F ) =
RMSE(F )

RMSE(Pers)
(7.9)

where RMSE(f̂ ) and RMSE(Pers) are the RMSE using predictions bst obtained from the model

f̂ and from the persistence respectively. The RMSE metric can be used to compare algorithms

evaluated on di�erent datasets, as long as the error of the persistence is known. Nonetheless care

must be taken to only compare results with the same forecasting horizon and sampling frequency,

since the improvement over persistence strongly depends on these factors. In Figure7.11 the

 RMSE metric is used to compare our results with results from three papers that implement

considerably more complex pipelines. Araya et al. (2020) designed a multi-scale deep learning

model, based on the LSTM network architecture, with the aim of predicting hourly wind speed

recorded at 20m high stations in four di�erent sites in Chile. They report the averaged accuracy

of 24h multi-step forecasts. C. Zhang, Wei, et al. (2016) used a Gaussian process stacked onto

an autoregressive model, to predict wind speed at one step (hour) ahead for three di�erent sites

in China. Trebing et al. ( 2020) predict hourly wind speed in three danish cities at horizons of

6, 12, 18 and 24 hours. This latter work uses a convolutional neural network to blend both

wind speed and other auxiliary data (i.e. temperature, pressure), from several cities at once.
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Araya best
(m/s)

KRR( � =24)
zm! s (m/s)

KRR( � =24)
s ! s (m/s)

e01 3.178 2.662 2.702
b08 1.673 1.413 1.488
d08 3.075 2.061 2.081
d05a 2.406 2.135 2.180

Trebing best
(m/s)

KRR( � =48)
zm! s (m/s)

KRR( � =48)
s ! s (m/s)

6h 1.675 1.814 1.714
12h 2.144 2.205 2.092
18h 2.375 2.317 2.244
24h 2.463 2.369 2.326

Table 7.1 Comparing performances on available datasets used in recent works.RMSE of our
models on the datasets of Araya et al. (2020) and Trebing et al. (2020). KRR with 24 and 48
hours of memory, and trained with di�erent input variables was used. s; z; mindicate wind
speed, zonal and meridional components andaux indicates auxiliary data from Trebing et al.
(2020).

For each comparison a separate error metric is used for our locations, to be consistent with

the compared work. The sameglobally bestmodel is used for all our locations, while for the

compared paper we take the best accuracy reported for each location or prediction horizon.

The results (see Figure7.11) show that the proposed model performs noticeably better than

the multi-scale model of Araya and others. The results of Zhang and others, are very close to

ours, and in this case the RMSE metric is higher since persistence becomes harder to improve

upon for 1 hour ahead predictions. Trebing and Mehrkanoon � which only provide averages

over three di�erent sites � use a model which is better than the proposed kernel ridge regression

on short term predictions (6 and 12 hours ahead), and worse on long term predictions (18 and

24 hours ahead). This suggests that the correlations between stations, and the auxiliary data,

provide an advantage on the short term, but lose importance over long-term predictions where

a model which takes purely the wind into account takes the lead.

A more accurate comparison can also be undertaken by training our models on publicly

available datasets used in Araya et al. (2020) and Trebing et al. (2020) adopting the same

train/test splits and error metrics as in the original papers. Using the KRR model � which on

our datasets clearly outperforms linear models � with the optimal memory as selected using

5-fold cross-validation, the two di�erent input-output combinations which performed best on

our data were tested. The results are shown in Table7.1. We con�rm that our model achieves

signi�cantly better performance than Araya's original work, both when using the two wind

components (zm! s) and when using solely wind speed (s ! s). Comparing against Trebing's

results we also recover the trend suggested by the simple RMSE metric: our model performs

better on long-term and worse on short-term predictions. These results further indicate that

the actual data, for example from multiple stations, using wind direction versus just wind speed,

and auxiliary environmental measurements, plays a more important role than the model itself

at improving the accuracy of wind speed prediction.
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Figure 7.11 Comparing improvement over persistence among di�erent papers. Red: Performance
of the globally best(see Section7.3.2) model for each forecast horizon trained on the respective
datasets. Blue: best result for each site as reported in the literature. Performance for each

model f̂ is measured using the RMSE (f̂ ) =
RMSE(f̂ )

RMSE(Pers)
as described in Equation (7.9).

7.6 Conclusions

In this work, we develop a machine learning approach to predict wind at a future time purely

from data, i.e. with no aid from mechanistic modeling. We conduct a systematic model selection

through all our datasets, providing physical principles to understand the patterns that we

observe and �nally we propose a thorough comparison with state of the art algorithms. First,

we compare models where both wind componentsvs. only wind speed are included in the

input/output. In this way it is possible to quantify the role of wind direction, a variable

which is often neglected in the literature, but has a clear physical meaning for the task of

wind forecasting. We �nd that predicting wind speed from its two components (thus taking

direction into account) is favorable in some locations but not in others. This result can be

understood by noting that the dynamics of the atmosphere near the ground (where we focus

our analysis) is strongly a�ected by the local orography and the features of the terrain near the

point of interest. Thus depending on the location, wind may interact with surface elements in

di�erent ways depending on whether it is blowing in one direction or another. Thus it may be

bene�cial to include direction in the input, depending on the details near the location of interest.

Predicting the two components of the wind separately and then reconstructing the speed from

its components is never useful, likely because it involves two di�erent models, leading to error

buildup.

Second, we analyze the role ofmemory, de�ned as the number of past observations used

as input. We �nd that a memory of 24 hours is optimal for all intermediate horizons. This

observation can be explained by the presence of regular diurnal cycles in wind speed, which are
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often observed in the atmosphere. To corroborate this intuition we quantify the strength of

the diurnal cycle and �nd that it correlates strongly with the bene�ts of a 24-hour memory.

On the other hand, the diurnal cycle does not have a strong in�uence on forecasting at short

and long horizons (here 1 hour and 24 hours). At a short horizon the strongest predictor is

wind persistence and not the diurnal cycle, while at a long horizon the chaotic nature of the

atmosphere makes forecasting very hard, and past history provides little information. Such

arguments are corroborated by the observation that non-linear models are clearly bene�cial

at intermediate horizons and only marginally at short and long horizons. Another �nding is

that using the same model settings (i.e., memory, model type, etc.) across locations provides

almost the same accuracy as using model settings tailored to each site (typically the gains are

below 1 % in NRMSE). Similarly taking into account non-stationary e�ects does not provide

signi�cant accuracy improvement.

Third, we seek to compare the proposed algorithm to the state of the art. A major hurdle

is the lack of benchmarking datasets: most manuscripts test their proposed algorithms on their

own dataset � whether public or proprietary. Clearly, to establish a fair comparison, di�erent

algorithms must be run on the same data. Hence to compare the models proposed in this paper

with competing models we could either (a) run the competing algorithm on our Liguria and

Abruzzo datasets, or (b) run the proposed algorithm on the datasets used in competing work.

The �rst option requires to re-implement competing algorithms, which is time consuming and

may result in arti�cial di�erences due to technical variations in the software. Hence we choose

the second option, although it limits the possible comparisons to those works where data is

made publicly available.

The main conclusion is that when the proposed models are run on the datasets published

in two of the most recent papers, the obtained accuracy is competitive with state of the art

algorithms. This is somewhat surprising because recent papers make extensive use of deep

architectures and complex pipelines, sometimes enriching the input with additional variables.

On the contrary, the proposed accelerated kernel ridge regression models are considerably simpler

to implement and additionally bene�t from sound theoretical guarantees. This equivalence

suggests that carefully optimizing the design of simple models, and paying attention to the input

and output variables, can be a fruitful alternative to the development of complex architectures

that are typically harder to explain.

Predictions of wind speed close to ground remain challenging both for physics-based

models and for purely data-driven strategies. Mechanistic models pose conceptual as well

as computational challenges. Atmospheric turbulence couples many spatial scales, hence

numerical solutions of the equation of motion require a massive number of grid cells. Moreover,

unmodeled mechanisms may a�ect the solutions. This is especially true close to the ground,

where interactions with the orography and local ground features cannot be modeled in detail.

Data-driven approaches may recover some of these unmodeled e�ects statistically, but their
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performance is limited by the lack of information on the physical processes that take place

in the atmosphere at di�erent locations. Some of these information may be recovered by

using spatiotemporal wind data as input, an approach that appears promising from current

literature (Trebing et al., 2020; Zhu et al., 2018; Xu et al., 2022; Messner et al.,2019). More

systematic hybrid approaches based on data assimilation techniques hold the promise to achieve

the ideal merge of a mechanistic and a data-driven approach.



Chapter 8

K -Planes: Explicit Radiance Fields

in Space, Time, and Appearance

Figure 8.1 Planar factorization of d-dimensional spaces. We propose a simple planar fac-
torization for volumetric rendering that naturally extends to arbitrary-dimensional spaces,
and that scales gracefully with dimension in both optimization time and model size. We
show the advantages of our approach on 3D static volumes, 3D photo collections with varying
appearances, and 4D dynamic videos.

In this �nal chapter, we leave the main theme of this thesis � large scale kernel methods �

behind, in order to explore the topics of scene reconstruction and novel-view synthesis. A

burgeoning topic in recent years, at the intersection of computer graphics and machine learning,

novel-view synthesis is best de�ned by considering the inputs and outputs to the problem.

Given a set ofcalibrated pictures of an object or scene (the inputs), we seek to obtain a model

which allows to produce a new rendering of the same scene from a di�erent view-point (the

output), which was not present in the training data. In practice this allows to automatically

create high-�delity 3D models of objects and scenes starting from a handful of pictures, with

applications in creating assets for cinema and video-games, augmented and virtual reality. The
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most prominent approach to solving the problem goes under the name of neural radiance �elds,

or NeRF, and will be presented in Section8.2. It was �rst proposed in Mildenhall, Srinivasan,

Tancik, et al. ( 2020) and has since been extended in numerous interesting ways. Our interest

for this problem stems from the observation that, while most of computer vision has been

steadily moving towards the use of ever larger deep learning models with correspondingly high

computational and data cost, novel-view synthesis has remained a problem which does not

need the huge representation capability ofe.g. large scale transformers. In fact, it has been

shown (Fridovich-Keil, Yu, et al., 2022; A. Chen et al., 2022) that state of the art reconstruction

accuracy can be achieved even with minimal use of non-linearities and neural networks.

In our work we present k-planes: a uni�ed, white-box model for radiance �elds, in arbitrary

dimensions. This last attribute signi�es the possibility of using the proposed model to represent

not only static, 3-dimensional scenes, but also dynamic, time-varying 4-dimensional scenes. A

planar factorization using
� d

2

�
planes to represent ad-dimensional scenes, provides a seamless

way to go from static (d = 3) to dynamic ( d = 4) scenes. In Section8.3 we describe in detail our

model, along with several dimension-speci�c priors which can be added to speed up learning

and improve performance. We use a linear feature decoder with a learned color basis that

yields similar performance as a nonlinear black-box MLP decoder. As described in Section8.4,

k-planes yields competitive (and often state-of-the-art) reconstruction �delity across a range of

synthetic and real, static and dynamic, �xed and varying appearance scenes. Video results and

code to reproduce our results are available atsarafridov.github.io/K-Planes .

8.1 Introduction

Recent interest in dynamic radiance �elds demands representations of 4D volumes. However,

storing a 4D volume directly is prohibitively expensive due to the curse of dimensionality.

Several approaches have been proposed to factorize 3D volumes for static radiance �elds, but

these do not easily extend to higher dimensional volumes.

We propose a factorization of 4D volumes that is simple, interpretable, compact, and yields

fast training and rendering. Speci�cally, we use six planes to represent a 4D volume, where

the �rst three represent space and the last three represent space-time changes, as illustrated in

Figure 8.1(d). This decomposition of space and space-time makes our model interpretable,i.e.

dynamic objects are clearly visible in the space-time planes, whereas static objects only appear

in the space planes. This interpretability enables dimension-speci�c priors in time and space.

More generally, our approach yields a straightforward, prescriptive way to select a factoriza-

tion of any dimension with 2D planes. For ad-dimensional space, we usek =
� d

2

�
(� d-choose-2�)

k-planes, which represent every pair of dimensions � for example, our model uses
� 4

2

�
= 6

hex-planesin 4D and reduces to
� 3

2

�
= 3 tri-planes in 3D. Choosing any other set of planes would

entail either using more than k planes and thus occupying unnecessary memory, or using fewer
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planes and thereby forfeiting the ability to represent some potential interaction between two of

the d dimensions. We call our modelk-planes; Figure8.1 illustrates its natural application to

both static and dynamic scenes.

Most radiance �eld models entail some black-box components with their use of MLPs.

Instead, we seek a simple model whose functioning can be inspected and understood. We

�nd two design choices to be fundamental in allowing k-planes to be a white-box model

while maintaining reconstruction quality competitive with or better than previous black-box

models (T. Li et al., 2022; Pumarola et al., 2021): (a) features from our k-planes aremultiplied

together rather than added, as was done in prior work (Chan et al.,2022; A. Chen et al., 2022),

and (b) our linear feature decoder uses a learned basis for view-dependent color, enabling

greater adaptivity including the ability to model scenes with variable appearance. We show

that an MLP decoder can be replaced with this linear feature decoder only when the planes are

multiplied, suggesting that the commonly-used MLP decoder is involved in both view-dependent

color and determining spatial structure.

Our factorization of 4D volumes into 2D planes leads to a high compression level without

relying on MLPs, using 200 MB to represent a 4D volume whose direct representation at

the same resolution would require more than 300 GB, a compression rate of three orders of

magnitude. Furthermore, despite not using any custom CUDA kernels,k-planes trains orders

of magnitude faster than prior implicit models and on par with concurrent hybrid models.

In summary, we present the �rst white-box, interpretable model capable of representing

radiance �elds in arbitrary dimensions, including static scenes, dynamic scenes, and scenes with

variable appearance. Ourk-planes model achieves competitive performance across reconstruction

quality, model size, and optimization time across these varied tasks, without any custom CUDA

kernels.

8.2 Related Work

K -planes is an interpretable, explicit model applicable to static scenes, scenes with varying

appearances, and dynamic scenes, with compact model size and fast optimization time. Our

model is the �rst to yield all of these attributes, as illustrated in Table 8.1. We further highlight

that k-planes satis�es this in a simple framework that naturally extends to arbitrary dimensions.

8.2.1 Volumetric rendering

We use the same volume rendering formula as NeRF (Mildenhall, Srinivasan, Tancik, et al.,

2020), originally proposed in Max (1995), where the color of a pixel is represented as a sum



8.2 Related Work 156

S
ta

tic

A
pp

ea
ra

nc
e

D
yn

am
ic

Fa
st

C
om

pa
ct

E
xp

lic
it

NeRF 3 7 7 7 3 7
NeRF-W 3 3 7 7 3 7
DVGO 3 7 7 3 7 7
Plenoxels 3 7 7 3 7 3
Instant-NGP, TensoRF 3 7 7 3 3 71

DyNeRF, D-NeRF � 7 3 7 3 7
TiNeuVox, Tensor4D � 7 3 3 3 7
MixVoxels, V4D � 7 3 3 7 7
NeRFPlayer � 7 3 3 3 2 7

K -planes hybrid (Ours) 3 3 3 3 3 7
K -planes explicit (Ours) 3 3 3 3 3 3

1 TensoRF o�ers both hybrid and explicit versions, with a small quality gap 2 NerfPlayer o�ers models at

di�erent sizes, the smallest of which with < 100 million parameters but the largest with > 300 million parameters

Table 8.1 Related work overview. We present a simple decomposition that works for a diverse
set of scenes and tasks (static, varying appearance, and dynamic). It has a low memory usage
(compact) and fast training and inference time (fast). Here �fast� includes any model that can
optimize within a few (< 6) hours on a single GPU, and �compact� denotes models that use
less than roughly 100 million parameters. �Explicit� denotes white-box models that do not rely
on MLPs.

over samples taken along the corresponding ray through the volume:

NX

i =1

exp

0

@�
i � 1X

j =1

� j � j

1

A
�
1 � exp(� � i � i )

�
ci (8.1)

where the �rst exp represents ray transmission to samplei , 1 � exp(� � i � i ) is the absorption by

sample i , � i is the (post-activation) density of sample i , and ci is the color of samplei , with

distance � i to the next sample.

Spatial decomposition. NeRF (Mildenhall, Srinivasan, Tancik, et al., 2020) proposed to

model color and density at each 3D position in a fully implicit way, with a large neural network

queried many times during optimization. This meant it had high training times, and was

essentially a black-box from an interpretability perspective. Several subsequent works have

used explicit representations of scene geometry to reduce the optimization time (at the expense

of a larger memory footprint). Plenoxels (Fridovich-Keil, Yu, et al., 2022) proposed a fully
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Figure 8.2 Method overview. (a) Our k-planes representation factorizes 4D dynamic volumes
into six planes, three for space and three for spatiotemporal variations. To obtain the value of a
4D point q = ( x; y; z; t ), we �rst project the point into each plane, in which we (b) do multiscale
bilinear interpolation. (c) The interpolated values are multiplied and then concatenated over the
S scales. (d) These features are decoded either with a small MLP or our explicit linear decoder.
(e) We follow the standard volumetric rendering formula to predict ray color and density. The
model is optimized by (f) minimizing the reconstruction loss with simple regularization in space
and time.

explicit model, where color and density were queried on a stored 3D feature grid, using trilinear

interpolation. This reduced the optimization time from hours to a few minutes. However,

their explicit grid representation of 3D volumes, and that of DVGO (C. Sun et al., 2022),

grows exponentially with the number of dimensions, and makes it challenging to scale to high

resolution and completely intractable for 4D dynamic volumes.

Hybrid methods (C. Sun et al., 2022; Müller et al., 2022; A. Chen et al., 2022) retain some

explicit geometric structure, often compressed by a spatial decomposition, alongside a small

MLP feature decoder. Instant-NGP (Müller et al., 2022) proposed a multiresolution voxel

grid encoded implicitly via a hash function, allowing fast optimization and rendering with

a compact model. TensoRF (A. Chen et al.,2022) achieved similar model compression and

speed by replacing the 3D voxel grid with a tensor decomposition into planes and vectors. In a

generative setting, EG3D (Chan et al., 2022) proposed a similar spatial decomposition into

three planes, whose values are added together to represent a 3D volume.

Our work is inspired by the explicit modeling of Plenoxels as well as these compressed spatial

decompositions, particularly the tri-plane model of Chan et al. (2022), the tensor decomposition

of A. Chen et al. (2022), and the multiscale grid model of Müller et al. (2022). We also

draw inspiration from Extreme MRI (F. Ong et al., 2020), which uses a multiscale low-rank

decomposition to represent 4D dynamic volumes in magnetic resonance imaging. These spatial

decomposition methods have been shown to o�er a favorable balance of memory e�ciency and

optimization time for static scenes. However, it is not obvious how to extend these factorizations

to 4D volumes in a memory-e�cient way. K -planes de�nes a uni�ed framework that enables
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e�cient and interpretable factorizations of 3D and 4D volumes and trivially extends to even

higher dimensional volumes.

Dynamic volumes. Applications such as Virtual Reality (VR) and Computed Tomography

(CT) often require the ability to reconstruct 4D volumes. Several works have proposed extensions

of NeRF to dynamic scenes. The two most common schemes are (1) modeling a deformation

�eld on top of a static canonical �eld (Pumarola et al., 2021; Tretschk et al., 2021; Park, Sinha,

Barron, et al., 2021; Du et al., 2021; Yuan et al., 2021; Fang et al., 2022; Z. Li, Niklaus, et al.,

2021), or (2) directly learning a radiance �eld conditioned on time (Xian et al., 2021; Z. Li,

Niklaus, et al., 2021; C. Gao et al., 2021; T. Li et al., 2022; Park, Sinha, Hedman, et al.,2021).

The former makes decomposing static and dynamic components easy (Yuan et al.,2021; T. Wu

et al., 2022), but struggles with changes in scene topology (e.g. when a new object appears),

while the latter makes disentangling static and dynamic objects hard. A third strategy is to

choose a compact 3D spatial representation and essentially repeat it at each time step (e.g.

NeRFPlayer (Song et al.,2022)), resulting in a model that ignores interactions between space

and time and can become impractically large for long videos.

Further, some of these models are fully implicit (Pumarola et al.,2021; T. Li et al., 2022)

and thus su�er from extremely long training times ( e.g. DyNeRF used 8 GPUs for 1 week

to train a single scene), as well as being completely black-box. Others use partially explicit

decompositions for video (Fang et al.,2022; Guo et al., 2022; F. Wang et al., 2022; Gan et al.,

2022; Shao et al.,2022; J.-W. Liu et al., 2022; Lombardi et al., 2019; Song et al.,2022), usually

combining some voxel or spatially decomposed feature grid with one or more MLP components

for feature decoding and/or representing scene dynamics. Most closely related tok-planes

is Tensor4D Shao et al.,2022, which uses 9 planes to decompose 4D volumes.K -planes is

less redundant (e.g. Tensor4D includes twoyt planes), does not rely on multiple MLPs, and

o�ers a simpler factorization that naturally generalizes to static and dynamic scenes. Our

method combines a fully explicit representation with a built-in decomposition of static and

dynamic components, the ability to handle arbitrary topology and lighting changes over time,

fast optimization, and compactness.

Appearance embedding. Reconstructing large environments from photographs taken with

varying illumination is another domain in which implicit methods have shown appealing results,

but hybrid and explicit approaches have not yet gained a foothold. NeRF-W (Martin-Brualla et

al., 2021) was the �rst to demonstrate photorealistic view synthesis in such environments. They

augment a NeRF-based model with a learned global appearance code per frame, enabling it to

explain away changes in appearance, such as time of day. With Generative Latent Optimization

(GLO) (Bojanowski et al., 2017), these appearance codes can further be used to manipulate the

scene appearance by interpolation in the latent appearance space. Block-NeRF (Tancik et al.,

2022) employs similar appearance codes.
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We show that our k-planes representation can also e�ectively reconstruct these unbounded

environments with varying appearance. We similarly extend our model � either the learned

color basis in the fully explicit version, or the MLP decoder in the hybrid version � with a global

appearance code to disentangle global appearance from a scene without a�ecting geometry. To

the best of our knowledge, ours is both the �rst fully explicit and the �rst hybrid method to

successfully reconstruct these challenging scenes.

8.3 K-planes model

We propose a simple and interpretable model for representing scenes in arbitrary dimensions.

Our representation yields low memory usage and fast training and rendering. Thek-planes

factorization, illustrated in Figure 8.2, models ad-dimensional scene usingk =
� d

2

�
planes

representing every combination of two dimensions. For example, for static 3D scenes, this

results in tri-planes with
� 3

2

�
= 3 planes representingxy, xz, and yz. For dynamic 4D scenes,

this results in hex-planes, with
� 4

2

�
= 6 planes including the three space-only planes and three

space-time planesxt , yt, and zt. Should we wish to represent a 5D space, we could use
� 5

2

�
= 10 deca-planes. In the following section, we describe the 4D instantiation of ourk-planes

factorization.

8.3.1 Hex-planes

The Hex-planes factorization uses six planes. We refer to the space-only planes asP xy , P xz ,

and P yz , and the space-time planes asP xt , P yt , and P zt . Assuming symmetric spatial and

temporal resolution N for simplicity of illustration, each of these planes has shapeN xN xM ,

where M is the size of stored features that capture the density and view-dependent color of the

scene.

We obtain the features of a 4D coordinateq = ( i; j; k; � ) by normalizing it between [0; N )

and projecting it onto these six planes

f (q)c =  
�
P c; � c(q)

�
; (8.2)

where � c projects q onto the c'th plane and  denotes bilinear interpolation of a point into

a regularly spaced 2D grid. We repeat Equation (8.2) for each planec 2 C to obtain feature

vectors f (q)c. We combine these features over the six planes using the Hadamard product

(elementwise multiplication) to produce a �nal feature vector of length M

f (q) =
Y

c2 C

f (q)c: (8.3)
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These features will eventually be decoded into color and density using either a linear decoder

or an MLP, described in Section8.3.3.

Why Hadamard product? In 3D, k-planes reduces to the tri-plane factorization, which

is similar to that of Chan et al. ( 2022), except that the elements are multiplied. A natural

question is why we multiply rather than add, as has been used in prior work with tri-plane

models (Chan et al.,2022; S. Peng, Niemeyer, et al.,2020). Figure 8.3 illustrates that combining

the planes by multiplication allows k-planes to produce spatially localized signals, which is not

possible with addition.

This selection ability of the Hadamard product produces substantial rendering improvements

for linear decoders and modest improvement for MLP decoders, as shown in Table8.2. This

suggests that the MLP decoder is involved in both view-dependent color and determining

spatial structure. The Hadamard product relieves the feature decoder of this extra task and

makes it possible to reach similar performance using a linear decoder solely responsible for

view-dependent color.

Figure 8.3 Addition versus Hadamard product. Elementwise addition of plane features (left)
compared to multiplication (right), illustrated in a 3D tri-plane example. In both cases a single
entry in each plane is positive and the rest are zero, selecting a single 3D point by multiplication
but producing intersecting lines by addition. This selection ability of multiplication improves
the expressiveness of our explicit model.

8.3.2 Interpretability

The separation of space-only and space-time planes makes the model interpretable and enables

us to incorporate dimension-speci�c priors. For example, if a region of the scene never moves,

its temporal component will always be 1 (the multiplicative identity), thereby just using the

features from the space planes. This o�ers compression bene�ts since a static region can easily
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Table 8.2 Ablation study over Hadamard product. Multiplication of plane features yields a
large improvement in PSNR " for our explicit model, whereas our hybrid model can use its
MLP decoder to compensate for the less expressive addition of planes. This experiment uses
the static Lego scene (Mildenhall, Srinivasan, Tancik, et al.,2020) with 4 scales:64, 128, 256,
and 512, and 32 features per scale.

Plane Combination Explicit Hybrid # params #

Multiplication 36.36 36.97 34M
Addition 30.59 36.73 34M

be identi�ed and compactly represented. Furthermore, the space-time separation improves

interpretability, i.e. we can track the changes in time by visualizing the elements in the time-

space planes that are not1. This simplicity, separation, and interpretability make adding priors

straightforward.

Multiscale planes. To encourage spatial smoothness and coherence, our model contains

multiple copies at di�erent spatial resolutions, for example 64, 128, 256, and 512. Models

at each scale are treated separately, and theM -dimensional feature vectors from di�erent

scales are concatenated together before being passed to the decoder. The red and blue squares

in Figure 8.2 a, b) illustrate bilinear interpolation with multiscale planes. Inspired by the

multiscale hash mapping of Instant-NGP (Müller et al., 2022), this representation e�ciently

encodes spatial features at di�erent scales, allowing us to reduce the number of features stored

at the highest resolution and thereby further compressing our model. Empirically, we do not

�nd it necessary to represent our time dimension at multiple scales. Table8.3 presents a small

ablation experiment to evaluate the impact of using multiple scales. Including lower-resolution

copies of the model brings up to 0.8 PSNR point improvement with the explicit model, while a

smaller improvement can be observed using the hybrid model.

Scales Explicit PSNR " Hybrid PSNR " # params #

64; 128; 256; 512 36.36 36.97 34M
128; 256; 512 36.44 37.23 34M

256; 512 36.40 37.19 32M
512 35.65 36.92 26M

64; 128; 256 33.79 35.22 9M

Table 8.3 Ablation study over scales. Including even a single lower scale improves performance,
particularly for our explicit model, with a relatively small overhead in train time and model size.
Using lower scales only (excluding resolution 5123) reduces both quality (PSNR) and model
size substantially. This experiment uses the staticLego scene; each scale uses 32 features.
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Total variation in space. Spatial total variation regularization encourages sparse gradients,

encoding the prior that edges are sparse in space. We encourage this in 1D over the spatial

dimensions of each of our space-time planes and in 2D over our space-only planes:

L T V (P) =
1

jCjn2

X

c;i;j

�
kP i;j

c � P i � 1;j
c k2

2 + kP i;j
c � P i;j � 1

c k2
2
�
; (8.4)

where i; j are indices on the plane's resolution. Total variation is a common regularizer in

inverse problems and was used in Plenoxels (Fridovich-Keil, Yu, et al.,2022) and TensoRF

(A. Chen et al., 2022).

Smoothness in time. We encourage smooth motion with a 1D Laplacian (second derivative)

�lter

L smooth (P) =
1

jCjn2

X

c;i;t

kP i;t � 1
c � 2P i;t

c + P i;t +1
c k2

2; (8.5)

to penalize sharp �acceleration� over time. We only apply this regularizer on the time dimension

of our space-time planes. See Table8.4 for an ablation experiment in which we verify the

positive impact of this regularizer.

Time Smoothness Weight Explicit PSNR " Hybrid PSNR "

0.000 29.69 29.86
0.001 30.78 31.24
0.010 31.17 31.56
0.100 31.10 31.50
1.000 30.67 31.22

10.000 29.72 30.57

Table 8.4 Ablation over temporal smoothness regularization. For both models, a temporal
smoothness weight of 0.01 to 0.1 is best, with PSNR degrading with over- or under-regularization.
This experiment uses theJumping Jacksscene with 4 scales: 64, 128, 256, and 512, and 32
features per scale.

Sparse transients. We want the static part of the scene to be modeled by the space-only

planes. We encourage this separation of space and time by initializing the features in the

space-time planes as1 (the multiplicative identity) and using an `1 regularizer on these planes

during training:

L sep(P) =
X

c
k1 � P ck1; c 2 f xt; yt; zt g: (8.6)

In this way, the space-time plane features of thek-planes decomposition will remain �xed at 1

if the corresponding spatial content does not change over time.
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8.3.3 Feature decoders

We o�er two methods to decode the M -dimensional temporally- and spatially-localized feature

vector f (q) from Equation ( 8.3) into density, � , and view-dependent color,c.

Learned color basis: a linear decoder and explicit model. Plenoxels (Fridovich-Keil,

Yu, et al., 2022), Plenoctrees (Yu et al., 2021), and TensoRF (A. Chen et al., 2022) proposed

model versions where spatially-localized features are interpreted as coe�cients of the spherical

harmonic basis functions and used to describe view-dependent color. Such spherical harmonic

decoders can o�er both high-�delity reconstructions and enhanced interpretability compared to

MLP decoders. However, spherical harmonic coe�cients are di�cult to optimize, and their

expressiveness is limited by the number of spherical harmonic basis functions used. Often

only harmonics up to degree two are used, thereby producing low-frequency (blurry) specular

re�ections.

Instead, we replace the spherical harmonic basis functions with a learned basis, retaining

the interpretability of treating features as coe�cients for a linear decoder yet increasing

the expressiveness of the basis and allowing it to adapt to each scene, as was proposed in

NeX (Wizadwongsa et al., 2021). We represent the basis as a small MLP that predicts a red

bR (d) 2 RM , greenbG(d) 2 RM , and blue bB (d) 2 RM basiswhose input is view direction d.

The MLP serves as an adaptive drop-in replacement for the spherical harmonic basis functions

repeated over the three color channels. We obtain the color values

RGB (q; d) =
[

i 2f R;G;B g

hf (q); bi (q; d)i ; (8.7)

where [ denotes concatenation (union). Similarly, we optimize a linear decoder for density by

predicting a b� 2 RM density basis, independent of the view direction:

� (q) = hf (q); b� (q)i ; (8.8)

where � (q) is the density of a d-dimensional point. The predicted color and density values are

�nally passed through a nonlinear function to ensure they are in the valid ranges: we apply

a sigmoid to the color values to ensure they lie in [0; 1], and an exponential (with truncated

gradient) to the density values to ensure they are nonnegative.

MLP decoder: a hybrid model. Our model can also be used with an MLP decoder like

that of Instant-NGP (Müller et al., 2022) and DVGO (C. Sun et al., 2022), turning it into a

hybrid model. In this version, features are decoded by two small MLPs, oneg� that maps the

spatially-localized features into density � and additional features f 0, and another gRGB that

maps these additional features as well as the embedded view direction (d) into RGB color
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� (q); f̂ (q) = g� (f (q))

RGB(q; d) = gRGB (f 0(q);  (d)) :
(8.9)

As in the linear decoder case, the predicted density and color values are �nally normalized

via exponential (with truncated gradient) and sigmoid, respectively.

Global appearance. We also show a simple extension of ourk-planes model that enables it

to represent scenes with consistent, static geometry viewed under varying lighting or appearance

conditions. Such scenes appear in the Phototourism dataset of Jin et al. (2021), depicting

famous landmarks photographed by tourists at di�erent times of day and in di�erent weather.

To model this variable appearance, we augmentk-planes with a matrix of shape M xT, an

M -vector of features for each training image index 1: : : T . Similar to NeRF-W (Martin-Brualla

et al., 2021), we optimize this per-image feature vector and pass it as an additional input to

either our MLP learned color basisbR ; bG; bB , in our explicit version, or to our MLP color

decodergRGB , in our hybrid version, so that in either case it can a�ect color but not geometry.

8.3.4 Optimization details

Full details of our optimization may be found in our released code. Here we specify three

components we modify from prior work to improve �exibility and speed.

Contraction and normalized device coordinates. For forward-facing scenes, we apply

normalized device coordinates (NDC) (Mildenhall, Srinivasan, Tancik, et al., 2020) to better

allocate our resolution while enabling unbounded depth. We also implement aǹ1 version

(rather than `2) of the scene contraction proposed in Mip-NeRF 360 (Barron, Mildenhall, Verbin,

et al., 2022), which we use on the unbounded Phototourism scenes.

Proposal sampling. We use a variant of the proposal sampling strategy from Mip-NeRF

360, with a small instance ofk-planes as each density model. Proposal sampling works by

�rst using a �xed sampling strategy along each ray into a density model, and then adaptively

choosing samples based on the densities of these initial samples. We use a two-stage proposal

sampler, resulting in both fewer samples that must be evaluated in our full model and in sharper

details by placing those samples closer to object surfaces. The density models used for proposal

sampling are trained with the histogram loss (Barron, Mildenhall, Verbin, et al., 2022).

Importance sampling. For multiview dynamic scenes, we implement a version of the

importance sampling based on temporal di�erence (IST) strategy from DyNeRF (T. Li et al.,

2022). During the last portion of optimization, we sample training rays according to the

maximum absolute variation in their color within 25 frames, slightly less than one second before
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(a) Ours-explicit (b) Ours-hybrid (c) TensoRF (d) Ground truth

Figure 8.4 Zoomed qualitative results on static NeRF scenes. Visual comparison ofk-planes,
TensoRF (A. Chen et al., 2022), and the ground truth, on ship (top) and hotdog (bottom).

or after. This results in higher sampling probabilities in the dynamic region. We apply this

strategy after the static scene has converged through standard optimization with uniformly

sampled rays. In our experiments, this sampling strategy has only a modest impact on full-frame

metrics but improves visual quality in the small dynamic region. Note that importance sampling

cannot be used for monocular videos or any datasets with moving cameras.

8.4 Results

We demonstrate the broad applicability of our planar decomposition via experiments in three

domains: static scenes (both bounded360° and unbounded forward-facing), dynamic scenes

(forward-facing multi-view and bounded 360° monocular), and Phototourism scenes with

variable appearance. For all experiments, we report the metrics PSNR (pixel-level similarity)

and SSIM1 (Z. Wang et al., 2004) (structural similarity), as well as approximate training time

and number of parameters (in millions), in Table 8.5. Blank entries in Table 8.5 denote baseline

methods for which the corresponding information is not readily available. Full per-scene results

may be found in Fridovich-Keil, Meanti, et al. ( 2023).

8.4.1 Static scenes

We �rst demonstrate our triplane model on the bounded, 360°, synthetic scenes from NeRF

(Mildenhall, Srinivasan, Tancik, et al., 2020). We use a model with four symmetric spatial

resolutions N 2 f 64; 128; 256; 512g and feature length M = 32 at each scale; please see the full

1Note that among prior work, some evaluate using a public implementation of SSIM from MipNeRF (Barron,
Mildenhall, Tancik, et al., 2021) whereas others use the implementation in scikit-image, which tends to produce
higher values. For fair comparison on each dataset we make a best e�ort to use the same SSIM implementation
as the relevant prior work.
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Ours-explicit Ours-hybrid DyNeRF

MixVoxels Neural Volumes Ground truth

Figure 8.5 Qualitative video results. Our hexplane model rivals the rendering quality of
state-of-the-art neural rendering methods. Our renderings were obtained after at most 4 hours
of optimization on a single GPU whereas DyNeRF trained for a week on 8 GPUs. MixVoxels
frame comes from a slightly di�erent video rendering, and is thus slightly shifted.

(a) Ours-explicit (b) Ours-hybrid (c) TensoRF (d) Ground truth

Figure 8.6 Zoomed qualitative results on static LLFF scenes (Mildenhall, Srinivasan, Cayon,
et al., 2019). Visual comparison of k-planes, TensoRF (A. Chen et al.,2022), and the ground
truth, on orchids (top) and T-rex (bottom).
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Table 8.5 1st section: average over 8 synthetic static scenes from Mildenhall, Srinivasan, Tancik,
et al. (2020); 2nd section: average over 8 real forward-facing static scenes from Mildenhall,
Srinivasan, Cayon, et al. (2019); 3rd section: average over 8 synthetic �teleporting camera�
dynamic scenes from Pumarola et al. (2021); 4th section: average over 6 real multiview forward-
facing dynamic scenes from T. Li et al. (2022); 5th section: average over 3 scenes from Jin et al.
(2021); MS-SSIM (multiscale structural similarity) is used instead of SSIM. K -planes timings
are based on one NVIDIA A30 GPU, see the full paper (Fridovich-Keil, Meanti, et al., 2023)
for per-scene results.

PSNR " SSIM " Train Time # # Params #

NeRF (static, synthetic)

Ours-explicit 33.13 0.964 38 min 34M
Ours-hybrid 33.62 0.967 38 min 34M
Plenoxels 31.71 0.958 11 min � 500M
TensoRF 33.14 0.963 17 min 18M
I-NGP 33.18 - 5 min � 16M

LLFF (Mildenhall, Srinivasan, Cayon, et al., 2019) (static, real)

Ours-explicit 26.78 0.841 33 min 19M
Ours-hybrid 26.92 0.847 33 min 19M
Plenoxels 26.29 0.839 24 min � 500M
TensoRF 26.73 0.839 25 min 45M

D-NeRF (Pumarola et al., 2021) (dynamic, synthetic)

Ours-explicit 30.39 0.96 52 min 37M
Ours-hybrid 30.84 0.96 52 min 37M
D-NeRF 29.67 0.95 48 hrs 1-3M
TiNeuVox 32.67 0.97 30 min � 12M
V4D 33.72 0.98 4.9 hrs 275M

DyNeRF (T. Li et al., 2022) (dynamic, real)

Ours-explicit 30.88 0.960 3.7 hrs 51M
Ours-hybrid 31.63 0.964 1.8 hrs 27M
DyNeRF 229.58 - 1344 hrs 7M
LLFF 223.24 - - -
MixVoxels-L (F. Wang et al., 2022) 30.80 0.960 1.3 hrs 125M

Phototourism (Jin et al., 2021) (variable appearance)

Ours-explicit 22.25 0.859 35 min 36M
Ours-hybrid 22.92 0.877 35 min 36M
NeRF-W 27.00 0.962 384 hrs � 2M
NeRF-W (public) 19.70 0.764 164 hrs � 2M
LearnIt 19.26 - - -

1 TiNeuVox uses half-resolution images for training and evaluation (V4D code is not yet public, so their resolution

is unknown). 2 DyNeRF (T. Li et al., 2022) and LLFF (Mildenhall, Srinivasan, Cayon, et al., 2019) only report

metrics on the �ame salmon video; average performance may be higher as this is one of the more challenging videos.
3 Open-source version of Nerf-W (Martin-Brualla et al., 2021) https://github.com/kwea123/nerf_pl/tree/nerfw

where we re-implement test-time optimization as for k-planes.
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paper (Fridovich-Keil, Meanti, et al., 2023) for ablation studies over these hyperparameters.

The explicit version of our model matches the prior state-of-the-art in terms of quality metrics,

while the hybrid version achieves slightly higher quality metrics. Figure 8.4 shows zoomed-in

visual results on a small sampling of scenes.

We also present results of our triplane model on the unbounded, forward-facing, real scenes

from LLFF (Mildenhall, Srinivasan, Cayon, et al., 2019). Our results on this dataset are

similar to the synthetic static scenes; both versions of our model match or exceed the prior

state-of-the-art, with the hybrid version achieving slightly higher metrics than the fully explicit

version. Figure 8.6 shows zoomed-in visual results on a small sampling of scenes.

8.4.2 Dynamic scenes

We evaluate our hexplane model on two dynamic scene datasets: a set of synthetic, bounded,

360°, monocular videos from D-NeRF (Pumarola et al.,2021) and a set of real, unbounded,

forward-facing, multiview videos from DyNeRF (T. Li et al., 2022).

The D-NeRF dataset contains eight videos of varying duration, from 50 frames up to 200

frames per video. Each time step has a single training image from its own camera viewpoint;

the camera �teleports� between adjacent timestamps (H. Gao et al.,2022). Standardized test

views are from novel camera positions at a range of timestamps throughout the video. Both

our explicit and hybrid models outperform D-NeRF in both quality metrics and training time

(by a large margin), though they do not surpass very recent hybrid methods TiNeuVox (Fang

et al., 2022) and V4D (Gan et al., 2022), as shown in Figure8.7.

The DyNeRF dataset contains six 10-second videos recorded at 30 fps simultaneously on

approximately 15-20 video cameras from a range of forward-facing view directions; the exact

number of cameras varies per scene because a few cameras produced miscalibrated videos. A

central camera is reserved for evaluation, and training uses frames from the remaining cameras.

Both our methods again produce similar quality metrics to prior state-of-the-art, including a

very recent hybrid method MixVoxels (F. Wang et al., 2022), with our hybrid method achieving

higher quality metrics. Please see Figure8.5 for a visual comparison.

Decomposing time and space

One neat consequence of our planar decomposition of time and space is that it naturally

disentangles dynamic and static portions of the scene. The static-only part of the scene can be

obtained by setting the three time planes to one (the multiplicative identity). Subtracting the

static-only rendered image from the full rendering (i.e. with the time plane parameters not set

to 1), we can reveal the dynamic part of the scene. Figure8.8 shows this decomposition of time

and space. This natural volumetric disentanglement of a scene into static and dynamic regions

may enable many applications across augmented and virtual reality (Benaim et al.,2022).
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(a) Ours-explicit (b) TiNeuVox (c) V4D (d) D-NeRF

Figure 8.7 Zoomed qualitative results on monocular dynamic scenes from D-NeRF Pumarola
et al., 2021. Visual comparison ofk-planes, D-NeRF (Pumarola et al., 2021), TiNeuVox (Fang
et al., 2022) and V4D (Gan et al., 2022), on t-rex (top) and hook (bottom).

We can also visualize the time planes to better understand where motion occurs in a video.

Figure 8.9 shows the averaged features learned by thext plane in our model for the �ame

salmon and cut beef DyNeRF videos, in which we can identify the motions of the hands in both

space and time. Thext plane learns to be sparse, with most entries equal to the multiplicative

identity, due to a combination of our sparse transients prior and the true sparsity of motion

in the video. For example, in the upper portion of Figure 8.8 one of the cook's arms contains

most of the motion, while in the lower �gure both arms are moving. Having access to such an

explicit representation of time allows us to add time-speci�c priors.

8.4.3 Variable appearance

Our variable appearance experiments use the Phototourism dataset (Jin et al.,2021), which

includes photos of well-known landmarks taken by tourists with arbitrary view directions,

lighting conditions, and transient occluders, mostly other tourists. Our experimental conditions

parallel those of NeRF-W (Martin-Brualla et al., 2021): we train on more than a thousand

tourist photographs and test on a standard set that is free of transient occluders. Like NeRF-W,

we evaluate on test images by optimizing our per-image appearance feature on the left half of

the image and computing metrics on the right half. Results are visualized in Figure8.10.

Also similar to NeRF-W (Martin-Brualla et al., 2021; Bojanowski et al., 2017), we can

interpolate in the appearance code space. Since only the color decoder (and not the density

decoder) takes the appearance code as input, our approach is guaranteed not to change the

geometry, regardless of whether we use our explicit or our hybrid model. Figure8.11 shows
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Full Space Time

Full Space Time

Figure 8.8 Decomposition of space and time.K -planes (left) naturally decomposes a 3D video
into static and dynamic components. We render the static part (middle) by setting the time
planes to the identity, and the remainder (right) is the dynamic part. Top shows the �ame
salmon multiview video (T. Li et al., 2022) and bottom shows the jumping jacks monocular
video (Pumarola et al., 2021).

Figure 8.9 Visualization of a time plane. The xt plane highlights the dynamic regions in the
scene. The wiggly patterns across time correspond to the motion of the person's hands and
cooking tools, in the �ame salmon scene (top) where only one hand moves and thecut beef
scene (bottom) where both hands move.
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Figure 8.10 Qualitative results from Phototourism dataset. We compare our model with
strong baselines including NRW (Meshry et al.,2019). Our method captures the geometry and
appearance of the scene, but produces slightly lower resolution results than NeRF-W. Note
that our model optimizes in just 35 minutes on a single GPU compared to NeRF-W, which
takes 2 days on 8 GPUs.
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Figure 8.11 Appearance interpolation. Like NeRF-W (Martin-Brualla et al., 2021), we can
interpolate our appearance code to alter the visual appearance of landmarks. We show three
test views from the Trevi fountain with appearance codes corresponding to day and night.

that our planar decomposition with a 32-dimensional appearance code is su�cient to accurately

capture global appearance changes in the scene.

8.5 Conclusions

We introduced a simple yet versatile method to decompose ad-dimensional space into
� d

2

�
planes,

which can be optimized directly from indirect measurements and scales gracefully in model

size and optimization time with increasing dimension, without any custom CUDA kernels. We

demonstrated that the proposedk-planes decomposition applies naturally to reconstruction of

static 3D scenes as well as dynamic 4D videos, and with the addition of a global appearance code

can also extend to the more challenging task of unconstrained scene reconstruction.K -planes

is the �rst explicit, simple model to demonstrate competitive performance across such varied

tasks.



Chapter 9

Conclusions

From the �rst chapter of this thesis, we set out to demonstrate how kernel methods and other

�shallow learning� algorithms could be adapted to better handle modern problems. There are

two main obstacles, which must be overcome: slow performance with larger datasets (an old

problem with kernel methods which is tackled in depth in Chapter 3) and the prevalence of

kernel functions which are too simple to provide precise data �ts, having very few kernel-speci�c

parameters. In Chapters3 and 4, we proposed some possible solutions to these hurdles, and

validated them experimentally. This showed that it is possible to translate abstract algorithms

into practical implementations, and the computational e�ciency of the algorithms can translate

into high performance on real hardware, although the two require a di�erent approaches and

optimizations. The result of our optimizations is a kernel solver with a great accuracy/e�ciency

tradeo�. Furthermore, by allowing an increasing number of hyperparameters to be trained

with gradient descent, the models themselves can become much more compact, without any

drop in accuracy, but with increased e�ciency when the model needs to be evaluated (i.e. at

inference time). Having a method for automatically setting model hyperparameters allows the

complexity of kernel functions to be increased without fear. The code used for all experiments

in these �rst two chapters is available as part of the open-sourceFalkon library with the aim of

both encouraging further research on large-scale kernel methods, and facilitating the use of

fast kernel methods by practitioners. We believe that future research in the same direction as

our work could focus on the following: (a) the use of loss functions other than the squared or

logistic � for example the hinge loss enjoys a preferred status in the kernel methods community

and imposes useful biases. (b) Development of alternative optimization algorithms, in order

to adapt to those losses which are harder to optimize for, or based on stochastic optimization

which only looks at a few training samples at every iteration. (c) Extending the use of kernels

with richer parameterizations, for which some initial steps have been made in Chapter4, where

we only scratch the surface of what can be accomplished with structured kernels applied to

appropriate data-types.
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In Chapter 5 we developed a very general framework in which, under the hard-margin

condition, it is possible to show that many di�erent kinds of models, using commonly adopted

surrogate losses, have exponentially decreasing classi�cation error in the multiclass setting.

While we have considered two (the hard-margin and low-noise) conditions on the class separation

due to their theoretical tractability, an interesting extension would be to consider other, more

realistic, noise models: for example allowing some non-vanishing fraction of the samples to be

mislabeled.

In Part II of this thesis we have investigated how kernel methods could be applied to a

diverse set of tasks stemming from real-world problems. Firstly in Chapter6 we focused on

the ability of a learning system to rapidly adapt to the changing environment by retraining

when new information arises. The setting is that of robot learning, where the robot is tasked

with recognizing objects within its �eld of view. Of course, in a real-world setting it would be

impractical to have a pre-trained model which can recognize every possible object, due to its

size, and to the possibility of encountering an object absent from the training set; hence the

need for a model which can be retrained with new data whenever it encounters a new object. In

this chapter we showed that retraining the deep neural network which is used for interpreting

visual signals is very computationally demanding, while instead it is possible to solve the same

problem by only retraining a kernel machine, placed top of the features extracted from the

pre-trained vision model. Such retraining is indeed much faster and in practice we demonstrate

how it can be used by the robot to learn how to recognize new objects.

In Chapter 7 we turned to the task of forecasting wind speed in the near future (up to

24 hours ahead). The adopted approach was purely data-driven, by training kernel machines

on physical variables measured in the hours preceding the forecast. To analyze the impact

of di�erent variables on the problem, a huge number of models were trained: we quanti�ed

the role of di�erent inputs such as wind direction, and that of the amount of memory on

which each prediction is based on. These variables all have strong physical interpretations

which are described in the chapter. Furthermore, we compared kernel-based models against

other algorithms proposed in the literature for the same task, and discovered that even deep

learning architectures do not provide an advantage from the point of view of neither forecasting

accuracy, nor computational e�ciency. Of course, a purely data-driven approach neglects the

fundamental physical structure of the problem: future work should focus on the development

of so calledhybrid models, which integrate mechanistic weather simulations with a data-driven

approach.

Finally, in Chapter 8, shallow learning models are used for novel-view synthesis. We proposed

an e�cient factorization of 3D space, which can be trivially extended to 4D environments (where

the fourth dimension represents time), and more. The proposed model explicitly stores learned

feature vectors such that, given a query point in space-time, one can obtain a high-dimensional

representation of such point by simple lookups, multiplications and concatenations �i.e. without
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querying a deep network. A small non-linear model is then used to interpret such feature

vectors as RGB color and material density, which are then coupled with a rendering formula

to generate images from arbitrary view-points. We demonstrated that the proposedk-planes

decomposition applies to both 3D scenes and dynamic 4D videos, and also extends to scenes for

which variable-appearance training images are given. Furthermore, by running experiments on

several di�erent datasets we showed that our model reaches a good trade-o� between accuracy

and training speed; however, it remains slower to train than other models proposed in the

literature which make use of custom CUDA kernels. Hence one could focus on further improving

the e�ciency of k-planes.
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Appendix A

Datasets

A.1 Generic datasets for kernel learning

In order to benchmark the algorithms proposed in Chapters3 and 4 we have used several

datasets which we believe represent a broad set of scenarios for kernel learning, in terms of data

size, data type, and learning task. They can be roughly divided into three groups: medium

sized unstructured datasets (both for regression and binary classi�cation), medium sized image

recognition datasets (multiclass classi�cation) and large unstructured datasets (classi�cation

and regression). We normally used a standard random split with 80% training, 20% testing

data unless prede�ned splits existed (for example in the MNIST dataset, as noted in TableA.1).

Preprocessing mostly consisted in basic data cleaning and data standardization to zero mean

and unit standard deviation; we comment in more detail below on speci�c preprocessing steps

applied to the individual datasets. Table A.1 provides a synthetic overview, as well as links

from which the data can be retrieved.

The error metrics used are dataset-dependent, and outlined below. For regression problems

we use the RMSE, which for predictions with a modelf̂ is de�ned as
q

n� 1 P n
i =1 (yi � f̂ (x i ))2

and its normalized version the NRMSE:

NRMSE :

�
�
�
�
�
�

q
1
n

P n
i =1 (yi � f̂ (x i ))2

1
n

P n
i =1 yi

�
�
�
�
�
�
: (A.1)

For the MSD dataset we use another metric called therelative error which is de�ned as
vu
u
t 1

n

nX

i =1

 
yi � f̂ (x i )

yi

! 2

: (A.2)

For classi�cation problems we use the fraction of misclassi�ed examples (c-error), and the area

under the curve (AUC) metric.
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HIGGS, SmallHIGGS has dimensionsn = 1 :1 � 107; d = 28 and a binary target. It is thus

a very large classi�cation dataset coming from high energy physics. It was preprocessed to 0

mean and unit variance. Results are reported on a 80-20 split with 1 minus the AUC metric in

Table 3.3 and with the binary classi�cation error in Table 3.4. It is available for download at

https://archive.ics.uci.edu/ml/datasets/HIGGS . We took a small random subsample of30 000

points to generate the SmallHIGGS dataset, which has prede�ned training and test sets.

TIMIT has dimensionsn = 1 :2 � 106; d = 440 and a multiclass target with 144 classes.

TIMIT comes from audio data, and our dataset uses the10 msresampling rate as in Ma et al.

(2017) and Ma et al. (2019). It was preprocessed to 0 mean and unit standard deviation. The

error metric is classi�cation error on a subset of classes (as used in Ma et al. (2017)), and

is calculated over a standardized subset of57 242samples. It is available for download at

https://catalog.ldc.upenn.edu/LDC93S1 .

YELP has dimensionsn = 1 :5 � 106; d = 6 :52� 107 and a continuous target. This dataset

consists of text reviews, labeled with their star rating. We used the same data as Tu et al.

(2016) (Yelp round 9 dataset), processed by extracting all 3-grams and encoding each review

by a count vector which tells us which 3-grams are present. Such encoding produces a large

number of sparse features which is re�ected in the huge dimensionality of this dataset. Since

the data is sparse we did not normalize it. The error metric is RMSE, calculated on random

20% of the samples. The dataset can be provided on request.

TAXI has dimensionsn = 1 :1 � 109; d = 9 with a continuous target. Data are normalized

to have zero-mean and unit standard deviation; reported error is RMSE on a 20% random

sub-sample. The data can be downloaded by following instructions athttps://github.com/

toddwschneider/nyc-taxi-data . Consistently with other users of this dataset (H. Peng et al.,

2017) we took the data from January 2009 to December 2015, excluding outliers (taxi trips

more than 5 hours long) and trips where the pickup or drop o� location is outside of NYC.

AIRLINE, AIRLINE-CLS has dimensionsn = 5:930� 106; d = 8 and a continuous target.

Data are normalized to zero-mean and unit standard deviation, and the error is the MSE over

normalized targets calculated on random test-sets of size33 % of the full data (consistently

with the literature (Hensman, Durrande, et al., 2017; Hensman, Fusi, et al.,2013)). The same

dataset is also used for binary classi�cation by thresholding the target at 0, which results

in the AIRLINE-CLS dataset. For this latter variation we used 100 000random points

for testing, reporting classi�cation error in Table 3.3 and 1 minus the AUC in Table 3.4 to

facilitate comparisons with the literature. The data can be downloaded fromhttps://www.

transtats.bts.gov/Fields.asp?Table_ID=236 and http://stat-computing.org/dataexpo/2009/

supplemental-data.html.
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MSD has dimensionsn = 5:100� 105; d = 90 with continuous target. Data are normalized

to zero-mean and unit standard deviation, and we report the relative error over a standard

test-set of size51 630. The dataset can be downloaded fromhttps://archive.ics.uci.edu/ml/

datasets/YearPredictionMSD.

SUSY has dimensionsn = 5� 106; d = 18 with binary target. Data are normalized to zero-

mean and unit standard deviation. We report the classi�cation error on 20% of the data. Data

is available from the UCI repositorieshttps://archive.ics.uci.edu/ml/datasets/SUSY .

SpaceGA, Abalone, MG, CpuSmall, Energy Small regression datasets between 1385

(MG) and 8192 (CpuSmall) samples, both labels and predictors are normalized to have zero

mean and unit standard deviation; the error metric used is NRMSE.

Road3D, Buzz, Protein, HouseElectric, BlogFeedback Regression datasets of medium

to large size from the UCI ML repositories. We normalized the labels to have zero mean and

unit standard deviation for Road3D, BlogFeedback, Buzz and Protein, and used an additional

log transformation on the labels of HouseElectric. Measured error is NRMSE. The predictor

matrix is also normalized to zero mean, unit standard deviation.

MNIST, FashionMNIST, SVHN, CIFAR-10 Four standard image recognition datasets.

Here the labels are one-hot encoded (all datasets have 10 classes), and the design matrix is

normalized using min-max normalization in the 0-1 range. Standard train/test splits are used.

Chiet A time-series dataset for short-term wind prediction with n = 34 059samples,d = 144

dimensions, and a continuous target. The labels and predictors are both normalized to have

zero mean, unit standard deviation. The error is measured with the NRMSE. A �xed split in

time is used. The dataset is available upon request.

Ictus A binary classi�cation dataset of brain MRI simulations with n = 29 545samples in

d = 992 dimensions. Predictors are standardized to have zero mean, unit standard deviation,

and a random 80/20 train/test split is used. The dataset is available upon request.

Cod-RNA, SVMGuide1, IJCNN1, CovType Four datasets for binary classi�cation

ranging between approximately 3000 points for SvmGuide1 and 5� 105 points for CovType.

The design matrix is normalized to have zero mean, unit standard deviation, while the labels

are � 1 and +1.
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Table A.1 Summary of the datasets used.

n d train/test split Error metrics

SpaceGA 3107 6 70%/30% NRMSE
Abalone 4177 8 70%/30% NRMSE
MG 1385 6 70%/30% NRMSE
CpuSmall 8192 12 70%/30% NRMSE
Energy 768 8 80%/20% NRMSE
Road3D 434 874 3 70%/30% RMSE
Buzz 2 049 280 11 70%/30% RMSE
Protein 45 730 9 80%/20% NRMSE
BlogFeedback 60 021 280 52 397/7624 RMSE
MNIST 70 000 784 60 000/10 000 10 class c-error
FashionMNIST 70 000 784 60 000/10 000 10 class c-error
SVHN 99 289 1024 73 257/26 032 10 class c-error
CIFAR-10 60 000 1024 50 000/10 000 10 class c-error
Chiet 34 059 144 26 227/7832 NRMSE
Ictus 29 545 992 80%/20% binary c-error
Cod-RNA 331 152 8 59 535/271 617 binary c-error
SVMGuide1 7089 4 3089/4000 binary c-error
IJCNN1 141 691 22 49 990/91 701 binary c-error
CovType 581 012 54 70%/30% binary c-error
SmallHIGGS 30 000 28 10 000/20 000 binary c-error, 1 - AUC
HIGGS 1:100� 107 20 80%/20% binary c-error, 1 - AUC
AIRLINE 5:930� 106 8 67%/33% MSE
AIRLINE-CLS 5:930� 106 8 5 829 413/100 000 binary c-error
TAXI 1:100� 109 9 80%/20% RMSE
TIMIT 1:200� 106 440 1 142 758/57 242 multiclass c-error
SUSY 5� 106 18 80%/20% binary c-error
MSD 5:100� 105 90 5 048 370/51 630 relative error
YELP 1:500� 106 6:520� 107 80%/20% RMSE
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Out-Of-Core Algorithms

In this section we describe more in detail the out-of-GPU core algorithms for (a) Cholesky

decomposition of a positive de�nite matrix and (b) multiplication of a triangular matrix by its

transpose. Both algorithms use a similar technique of dividing the input matrix in smaller tiles

such that operations can be performed in-core on the individual tiles. Then the main challenges

of such algorithms consist in choosing when to bring which tiles in-core, and how to do so in

parallel, handling data-dependencies between di�erent tiles.

We handle parallelism between multiple GPUs using a static work-allocation scheme where

the input matrix is divided into block rows or columns (made up of several tiles), and each GPU

is assigned one or more such rows (or columns) block-cyclically, to ensure that the workload

is approximately balanced. Ensuring a balanced workload is tricky since the input matrices

are triangular, and for example a row at the top of a lower-triangular matrix will have many

more tiles than a row towards the bottom of said matrix. Smaller tile-sizes (so thinner block

rows/columns) make each processor's workload more even, but � in case the input matrix is

not big enough � they reduce overall GPU utilization.

Triangular matrix multiplication. We begin by describing OOC triangular matrix multi-

plication, an operation which is known as LAUUM within the LAPACK library. Given an input

upper triangular matrix U 2 Rn� n , we want to calculate the upper triangle of UU> and store it

in the upper part of U (thus making this an in-place operation). We divide U in N � N tiles of

sizet (uneven tile sizes are possible, and indeed necessary to support all input sizes, but omitted

from the description for clarity), and we index all matrices by their tiles: U2;2 is the square

tile at the second block-row and second block-column ofU. The in-place LAUUM operation

can be compactly described asUi;j =
P N � 1

k= j Ui;k U>
j;k for j � i : to update a tile of U we need

to multiply two block-rows of the original matrix. However, we can exploit the triangular

structure of some of the above matrix multiplications to improve performance: for example,

when i = j it is possible to split the update into two parts Ui;i = Ui;i U>
i;i +

P N
k= i Ui;k U>

i;k where

the �rst part consists of an in-core LAUUM operation and the second of a symmetric matrix
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Algorithm 4 Out-of-core LAUUM operation on an upper-triangular matrix. The algorithm's
inputs are matrix U, a synchronization object barrier , an array of arrays describing which
row indices are assigned to which processorblockAllocs , and the number of tiles per sideN .
The function described below should be called for every available GPU with a di�erentprocId
value.

1: function OocLauum (U 2 Rn� n ; barrier ; blockAllocs ; procId ; N )
2: for i = 1 ; : : : ; N do
3: C 2 Rt � t �(N � i )  ToGPU(procId ;

h
Ui;i ; : : : ; Ui;N

i
)

4: barrier.wait()
5: for j 2 blockAllocs [procId ] do
6: if i = j then
7: C1  C1C>

1 . via LAUUM
8: if i 6= N then
9: C1  C1 + C1:(N � i +1) C>

1:(N � i +1) . via SYRK
10: end if
11: else if j > i then
12: D 2 Rt � t �(N � j )  ToGPU(procId ;

h
Uj;j ; : : : ; Uj;N

i
)

13: C(j � i )  C(j � i )D >
1 . via TRMM

14: if j 6= N then
15: C(j � i )  C(j � i +1):( N � i +1) D >

2:(N � j +1) . via GEMM
16: end if
17: end if
18: Ui;j  FromGPU(procId ; C(j � i ) )
19: end for
20: end forreturn U
21: end function
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multiplication (BLAS routine SYRK) which can be up to twice as fast as the general matrix

multiplication routine. Similarly, for i < j , Ui;j = Ui;j U>
j;j +

P N
k= j +1 Ui;k U>

j;k where the �rst part

can use the TRMM routine from the BLAS library and the second must use the generic GEMM

routine. To avoid overwriting parts of U which are still needed for the updates � especially in a

multi-GPU setting � the rows of U are to be updated one at a time, from top to bottom. To

ensure synchronization between multiple GPUs we use a thread barrier so that all GPUs start

updating a given row after having loaded its original, non-updated version in GPU memory.

GPU memory requirements for Algorithm 4 are two block-columns (i.e. 2Nt 2 numbers). As

discussed above, rows are assigned to GPUs in a 1D block-cyclic way. Such allocations are

recorded in the blockAllocs variable.

An adaptation of Algorithm 4 is possible when in-place operation is not needed: it is

su�cient to remove the synchronization barrier, and change line 18 to write the output to a

di�erent matrix.

Cholesky decomposition. We want to decompose positive de�nite matrix A into lower

triangular matrix L such that L > L = A. But A does not �t entirely in GPU memory, and

potentially more than one GPU is available. As before it is convenient to subdivideA into

smaller tiles such that the tiles �t in GPU memory.

0
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Then the in-place decomposition may proceed column-wise across matrixA, where each

column update requires three steps. The �rst step is to use the in-corePOTRFfunction from

cuSOLVER NVIDIA Corporation, 2020bon a single tile. Then, a triangular solution step is

used to update the remaining rows of the �rst column (taking the �rst column as an example

A j; 1 = L j; 1L >
1;1; 1 < j < N , so clearly L j; 1 = A j; 1(L � 1

1;1)> ). This can be done by using the

TRSM operation from any GPU BLAS implementation. Finally, the trailing submatrix must

be updated with those terms which can be computed from the current column, so that after this

last step such column is not needed anymore. This step consists of runningA ij = A ij � L i; 1L >
j; 1

where if c is the current column i > c; c < j � i (refer to Figure 3.3 for a more intuitive

picture).

Running this algorithm in parallel requires dealing with several data dependencies in-between

tiles, and in general it will not be possible to achieve perfect parallelism due to the inherently

serial step of performing the Cholesky decomposition of the �rst tile in a column. We avoid

coarse synchronization mechanisms such as the thread barrier which was used for the LAUUM

OOC implementation, since we found they could introduce very high waiting times (barriers
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Algorithm 5 Out-of-core, in-place Cholesky decomposition of symmetric positive de�nite
matrix A. The lower triangle of A will be overwritten by L such that L > L = A. The function
OocPotrf should be called for each available GPU with di�erent values of theprocId variable
to parallelize the decomposition across GPUs. The inputs are the same as for Algorithm4 but
for work-table T 2 ZN � N whose values are atomically updated by the di�erent GPU processes
to ensure synchronization.

1: function OocPotrf (A; blockAllocs ; procId ; T ; N )
2: for i = 1 ; : : : ; N do
3: if i 2 blockAllocs [procId ] then
4: B  Load(A; T ; i; j; i )
5: B  POTRF(B )
6: A i;i  Write (B; T ; i; i )
7: end if
8: for j 2 blockAllocs [procId ] do
9: if j � i then

10: continue
11: end if
12: B  Load(A; T ; i; i; i + 1)
13: C  Load(A; T ; j; i; i )
14: C  C(B � 1)> . via TRSM
15: A j;i  Write (C; T ; j; i )
16: end for
17: for j 2 blockAllocs [procId ] do
18: if j � i + 1 then
19: continue
20: end if
21: C  Load(A; T ; j; i; i + 1)
22: for y = i; : : : j do
23: E  Load(A; T ; j; y; i )
24: if y = j then
25: E  E � CC> . via SYRK
26: else
27: D  Load(A; T ; y; i; i + 1)
28: E  E � DC > . via GEMM
29: end if
30: A j;y  Write (E; T ; j; y )
31: end for
32: end for
33: end for
34: end function

35: function Load (A; T; i; j; exp)
36: while Ti;j < exp do
37: wait
38: end while
39: return ToGPU(A i;j )
40: end function

41: function Write (G; T; i; j )
42: Ti;j  Ti;j + 1
43: return FromGPU(G)
44: end function
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Table B.1 Benchmark timings using a single GPU. The relative slowdown with respect to Falkon
on 2 GPUs is also provided for comparison with Table3.3.

1 GPU 2 GPUs Relative change

TAXI 7215 � 4 s 3628� 2 s 1:99�

HIGGS 715� 6 s 443� 2 s 1:61�

YELP 1981� 6 s 1008� 2 s 1:97�

TIMIT 416 � 4 s 288� 3 s 1:44�

AIRLINE 334 � 2 s 245� 5 s 1:36�

MSD 81� 0 s 62� 1 s 1:31�

AIRLINE-CLS 391 � 5 s 269� 3 s 1:45�

SUSY 29� 1 s 22� 0 s 1:32�

would be needed after each of the three steps of the algorithm to ensure proper synchronization).

Our solution, which somewhat follows Ltaief et al., 2011, uses an integer tableT with one

entry per tile, which is shared between all GPU threads. The entries ofT represent the current

state of each tile: basically how many times the tile has been updated. Since we use a static

row-cyclic work allocation like for the triangular matrix multiplication, each thread knows

the expected state of a tile for each step (e.g. to perform the �rst step on tile Ac;c the tile

must have been updated exactlyc times). So it can wait until such state has been reached,

then read the tile into GPU memory, perform the update, write back the tile to main RAM,

and increment the corresponding entry inT. Such a scheme is implemented in Algorithm5

with the help of the Load and Write sub-routines. Further optimizations are possible by

being careful about which tiles are swapped in and out of GPU memory and at what times,

overlapping computation with memory transfers when possible. Such optimizations generally

require to increase the total memory allocated on the GPU, thus decreasing the maximum

possible tile-size.

B.1 Experiments with Falkon on 1 GPU

In Table B.1 we show the performance of the Falkon algorithm on all considered datasets for 1

and 2 GPUs side by side. It is clear that larger datasets scale better with more GPUs since

the startup cost (mostly taken up by CUDA initialization) and the lower scaling ratio of the

preconditioner are amortized.
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